

Application Programs Reference Manual Version 2.2 English

20

Congratulations on your purchase of your programs for a TPS1100 Professional Series.

For safe system use, pay attention to the important safety regulations in the "System" instructions *(refer to chapter "Safety directions")*. Read carefully through the User's Manual before you switch on the instrument.

The instrument model and serial number of your product are indicated on the label in the battery compartment.

Enter the model and serial number in your manual and always refer to this **information** when you need to contact your **agency** or authorized **service workshop**.

Туре:	Serial no.:
SW version:	Language:

The symbols used in this User's Manual have the following meanings:

DANGER:

Indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.

WARNING:

Indicates a potentially hazardous situation or an unintended use which, if not avoided, could result in death or serious injury.

CAUTION:

Indicates a potentially hazardous situation or an unintended use which, if not avoided, may result in minor or moderate injury and / or appreciable material, financial and environmental damage.

Important paragraphs which must be adhered to in practice as they enable the product to be used in a technically correct and efficient manner.

View of Chapters

Contents	6
Introduction	11
Orientation and Height Transfer	12
Resection	22
Tie Distance	30
Stakeout	37
Free Station	54
Reference Line	66
Remote Height	79
Hidden Point	83
Area	89
Sets of Angles	97
Traverse	124
Local Resection	138
COGO	142
Road+ File Editor	169
Road+	196
Auto Record	244
Monitoring	251
Reference Plane	256
DTM-Stakeout	266

Contents

	11
Calling up a program	11
Licence Code	11
Orientation and Height Transfer	. 12
Introduction	12
Target Point	12
Point List	13
Measure Mode	13
Calculation	14
More Information	16
Plot	17
Configuration	18
Configuration Editor	18
Dual-face Measurement	20
l og file	20
Resection	. 22
Resection	. 22 22
Resection	. 22 22 22
Resection Introduction Station Data Target Point	. 22 22 22 23
Resection	. 22 22 22 23 23
Resection Introduction Station Data Target Point Measure Mode Calculation	. 22 22 22 23 23 24
Resection Introduction Station Data Target Point Measure Mode Calculation Compare results	22 22 22 23 23 23 24 25
Resection Introduction Station Data Target Point Measure Mode Calculation Compare results Configuration	. 22 22 22 23 23 23 24 25 26
Resection Introduction Station Data Target Point Measure Mode Calculation Compare results Configuration Configuration Editor	. 22 22 23 23 23 23 24 25 26 26
Resection Introduction Station Data Target Point Measure Mode Calculation Compare results Configuration Configuration Editor Dual-face Measurement	. 22 22 23 23 23 23 23 23 23 25 26 26 27

Tie Distance	30
Introduction	30
Polygonal Mode	30
Radial Mode	30
Measure Mode	31
Results	32
Configuration	33
Configuration Editor	33
Dual-face Measurement	34
Log File	35
Stakeout	37
Introduction	37
Search Point	37
Manual Stakout	20
Coorco Dositioning	20
	20
Cithegenel	39
Azimuth and Distance	40
Azimuti anu Distance	41
Delar Stakesut	42
Polal Slakeoul	42
Olthogonal Stakeout	44
Stakeout with auxiliary points	45
Slakeut from Coordinate Differences	47
Diet	40
Configuration	51
	51
Log ⊢ile	52

Free Station	54
Introduction	54
Station Data	54
Target Point	55
Point List	55
Measure Mode	56
Calculation	56
Compare results	58
More Information	59
Plot	60
Configuration	61
Configuration Editor	61
Dual-face Measurement	62
Log File	63
-	
Reference Line	66
Reference Line	
Reference Line Introduction Constant reference elevation	 66 66 67
Reference Line Introduction Constant reference elevation Interpolated reference elevation	 66
Reference Line Introduction Constant reference elevation Interpolated reference elevation Reference Line Menu	66 66 67 67 68
Reference Line Introduction Constant reference elevation Interpolated reference elevation Reference Line Menu Baseline Points	66 66 67 67 68 68
Reference Line Introduction Constant reference elevation Interpolated reference elevation Reference Line Menu Baseline Points Determine Base Points	66 66 67 67 68 68 68 68
Reference Line Introduction Constant reference elevation Interpolated reference elevation Reference Line Menu Baseline Points Determine Base Points Define Reference Line	66 66 67 68 68 68 68 68 68
Reference Line Introduction Constant reference elevation Interpolated reference elevation Reference Line Menu Baseline Points Determine Base Points Define Reference Line Reference Line Results	66 66 67 67 68 68 68 68 69 70
Reference Line Introduction Constant reference elevation Interpolated reference elevation Reference Line Menu Baseline Points Determine Base Points Define Reference Line Reference Line Results Line and Offset	66 6667686868697072
Reference Line Introduction Constant reference elevation Interpolated reference elevation Reference Line Menu Baseline Points Determine Base Points Define Reference Line Reference Line Results Line and Offset Enter L&O values	66 66676868686869707272
Reference Line Introduction	66 66 67 68 68 68 68 69 70 72 72 73

Configuration Configuration Editor Log File	75 75 77
Remote Height	79
Introduction	79
Measure Base Point	79
Measure Remote Point	81
Configuration	82
Hidden Point	83
Introduction	83
Measure Rod	84
Result	85
Configuration	86
Example of Measurement data	87
Logfile	87
Application notes	88
Area	89
Introduction	89
Measure Mode	89
Straight line	89
Arcs	90
Calculation	92
Plot	93
Configuration	
Configuration Editor	
Dual-face Measurement	
Log ⊢∥e	95

Sets of Angles	97
Introduction	97
Sets Menu	
Sets menu	
Measure Mode	
Calculate Mode	106
Examples and used formulae	114
Configuration	116
Configuration Editor	116
Log File	118
Example of Logfile Data	118
Traverse	124
Introduction	124
Traverse Menu	125
Traverse Menu	125
New traverse	125
Occupy station	129
Traverse Point / Sideshot Point	130
Close traverse	131
Plot	133
Configuration	134
Configuration Editor	134
Dual-face Measurement	134
Multiple Measurement	135
Log File	136

Local Resection	. 138
Introduction	138
Station Data	138
Target Point	139
Calculation	139
Configuration	140
Configuration Editor	140
Dual-face Measurement	141
COGO	. 142
Introduction	142
Configuration	143
Function selection (COGO Menu)	144
Inverse (polar calculation)	144
Traverse	146
Defining direction by magnetic bearing	147
Defining direction by Azimuth	148
Defining horizontal distance	149
Traverse results	150
Intersections	151
Bearing-Bearing Intersection	151
Bearing-Distance Intersection	154
Distance-Distance Intersection	157
Intersection by Points	160
Offsets	161
Distance-Offset	162
Orthogonal point calculation	164
I hree Point Arc	167

Road+ File Editor	169
Introduction	. 169
Open file	. 173
Coordinate Data Files	. 174
New Coordinate File	174
Insert Point Coordinates	175
Insert Station Coordinates	176
Insert Code Block	178
Search	179
Horizontal Alignment Files	. 179
New Horizontal Alignment File	179
Header Record	180
Insert Tangent	181
Insert Circular Curve	183
Search	184
Vertical Alignments	184
New Vertical Alignment File	184
Header Record	185
Insert Tangent	186
Insert Circular Curve	187
Insert Parabola	188
Search	189
Cross Section	. 190
New Cross Section File	190
Header Record	190
Insert Cross Section Point	191
Search	192
Station Equations	. 192
New Station Equation File	192

Header Record Insert Station Equation Search Cross Section Assignments New Cross-section Assignment File Header Record Insert Cross-section Assignment Search	
Road+	196
Introduction	196
Alignment Definition	196
Data Files	196
Creating Data Files	199
Program Overview	200
Getting started	200
Configuration	201
Select Alignment Files	202
Horizontal Alignment File	203
Vertical Alignment File	203
Cross Section/template File	203
Cross Section Assignment File	
File Checking	
Stakeout Using Honzontal Oliset	
Preparing for the example	
Old :	
Steleout and Record point	

Horizontal Offset Stake Out Summary	222
Select Alignment Files	222
Set offset value and select point to staked	out 222
Stakeout the point	223
Select new chainage	223
Slope Staking	224
Reference Point	227
Data Formats	229
Horizontal Alignment	229
Vertical Alignment	232
Cross Sections	235
Cross Sections Assignments	238
Station Equations	
Log File	
Auto Decord	044
Αυίο κεύοια	
Introduction	244 244
Introduction Configuration Options	
Introduction Configuration Options Notes on Configuration	
Introduction Configuration Options Notes on Configuration Measurement and Recording	
Auto Record Introduction Configuration Options Notes on Configuration Measurement and Recording Notes on Measurement	
Introduction Configuration Options Notes on Configuration Measurement and Recording Notes on Measurement Example of Logfile Data	
Introduction Configuration Options Notes on Configuration Measurement and Recording Notes on Measurement Example of Logfile Data	
Introduction Configuration Options Notes on Configuration Measurement and Recording Notes on Measurement Example of Logfile Data Monitoring Introduction	
Introduction Configuration Options Notes on Configuration Measurement and Recording Notes on Measurement Example of Logfile Data Monitoring Introduction Main menu	
Introduction Configuration Options Notes on Configuration Measurement and Recording Notes on Measurement Example of Logfile Data Monitoring Introduction Main menu Selecting Points	
Introduction Notes on Configuration Measurement and Recording Notes on Measurement Example of Logfile Data Monitoring Introduction Main menu Selecting Points Measurement menu	
Introduction Configuration Options Notes on Configuration Measurement and Recording Notes on Measurement Example of Logfile Data Monitoring Introduction Main menu Selecting Points Measurement menu Selecting the points to be measured	

Timer selection Point measurement	255 255
Reference Plane	. 256
Introduction	256
Reference Plane Menu	257
Local system - Plane definitions	258
Vertical Plane	258
Tilted Plane	258
Define Points	259
Define Local Plane	260
Results Dialog	260
Offset Dialog	261
Point Measurement	261
Instrument system	262
Define Instrument Plane	262
Point Measurement	263
Configuration	264
Logfile	264
DTM-Stakeout	. 266
Introduction	266
Select DTM File	266
Measurement Dialog	267
Data Formats	268
DXF-Format	268
Leica GSI - Format	269
Log File	271

Introduction

The electronic theodolites and total stations in the TPS System 1100 are equipped with programs for processing field data and controlpoint coordinates. The systems are therefore highly functional and classical survey tasks are simplified appreciably.

All program sequences are based on a unified structure. The clearlydesigned display with the function keys makes learning easy. Each program has a configuration dialog. In this dialog, the user can match program-specific parameters to changes in requirements and sequences. The various possibilites are described in the instructions for the individual programs.

Calling up a program

The TPS1100 keyboard is equipped with a program key: $\mathbb{P}^{\text{PROG}}_{\bullet}$

Pressing this key will display a menu with all programs installed on your instrument.

Licence Code

When starting certain programs, it can happen that a licence code is requested. The licence code is needed to run the program with full functionality.

Without licence code, you can run the programs in a demonstration version, but you will not be able to calculate and store the results.

The licence code is available from your Leica Geosystems agency, who will inform you about licence fees for code protected programs.

Orientation and Height Transfer

Introduction

This manual describes the "Orientation and Height Transfer" program of the TPS1100 Professional series.

The instrument must be set up on a known point. The program "ORIENTATION" calculates an angular correction for the instruments horizontal circle, so that 0.0000 of the horizontal circle corresponds with grid north (Orientation correction), using reference points with known Easting and Northing.

For simultaneous determination of the station elevation, height of instrument and height of reflector must already have been input and the elevation of the target points must be known. You may use target points with elevation only.

The program handles a maximum of 10 points.

Target Point

Enter the target point number and height of the reflector

Retrieve the coordinates of F1 the target point. Search the coordinates of the point entered in the active data job and go to the measure mode.

Define a list of target points and the measurement sequence. For further use: selection of points from the list is possible.

Target Point, continued

Point List

Displays the previous point F3 ۲ from the list of points entered. Note that this key will not be available until there is at least one point in the list.

Displays the next point in the F4 list of points entered. Note that this key will not be available until there is at least one point in the list.

Search and display the coordinates of the point found in the active data job.

Run the calculation.

۲ Note, the **F**⁶ key will be assigned after the first measurement.

Start the "CONFIGURATION" Enter a maximum of 10 points. The same point can be retrieved several times.

		B		
Ori		Point List		Ы
Point	1	:	1	\geq
Point	2	:	2	
Point	3	:	3	
Point	4	:	4	
Point	5	:	5	
Point	6	:	6	
CONT				
CONT				
CONT	7			
Point Point	7		7 2	
Point Point	78	: :	7 8	
Point Point Point	7 8 9	: : :	7 8 9	
Point Point Point Point	7 8 9 10		7 8 9 0	
Point Point Point Point	7 8 9 10		7 8 9 0	

SH F2 F3 F4

Return to the dialog "Target Point".

Measure Mode

This dialog is similar to the TPS 1000's basic "Measure Mode" dialog. Once a measurement is taken, the program will return to the dialog "Target Point" to acquire the next point for measuring.

If the orientation correction can be calculated successfully from any of the first measurements, the Δ Hz and ΔV values are displayed for further entered target point. Motorized theodolites will automatically drive the telescope to the target point.

Measure mode, continued

ſ	0ri∖	Me	asure			4	2
	Point	Id	:		1	- 6	Ν
	HZ		: 2	16°55	'50"		
	۷		:	71°16	'20"		
	Refl.	Ht.	:	1	. 300	m	
	Slope	Dist	:	385	.231	m	
	ΔHZ		:	-			
	ALL	DIST	REC	CONT	TARGT		
SHIFT				I<>II		QU	п
۲	• F1	F2	F3	• F4	_ F	5	F6

SHIFT

SHIFT

F4 Change the theodolite face.

Exit the program.

● F1

Simultaneously measure and record data on the active

recording device.

Return to the dialog "Target Point".

Measure a distance.

Record the measurement on the active recording device.

Return to the dialog "Target Point".

Accept the measurement and return to the dialog "Target

Point".

Calculation

Calculates the orientation, the elevation and the respective standard deviations.

	OFI Resul Station Id No. of Pts. Inst.Ht. East North Elevation S.ORI S.HT	ts : : : : ST((Robust) 10 5 1.635 2134.234 4723.365 521.643 DRE MEAS MORE		
	Hz Ori. σElev. σHz Ori.	:	2°12'34'' 0.010 0°00'03*	m	
SHIFT	LSQRS		PLOT	QUIT	

F1 F2 F3 F4 F5 F6

Station Id. Point number assigned to the station

No. of Pts. Number of points measured

Inst.Height Instrument Height

Orientation and Height Transfer

Calculation. continued

East Easting of the station

North Northing of the station

Flevation Calculated elevation of the station

Orientation Oriented direction

σ Elevation

Standard deviation of the Elevation

σ Orient

Standard deviation of the Orientation

Set orientation on the instrument.

Note that once this key has been pressed it will not be possible to execute more measurements.

Set station elevation on the instrument

Note that once this key has been pressed it will not be possible to execute more measurements.

Record the following results into the active measurement job

- WI 11 Station Point Number
- WI 25 Orientation correction
- WI 84 Station Easting
- WI 85 Station Northing
- WI 86 Station Elevation
- WI 87 Last reflector height used
- WI 88 Instrument Height

Measure more points. The F4 program will recall the "TARGET POINT" dialog.

Select between the "Robust" method and

the "Least Square" method.

SHIFT	
۲	\odot

Sketch of the station and the reference

points used.

More Information

Display the residuals of individual measurements. You can also disable points from the calculation of orientation or height as well as delete erroneous measured points.

Ori\ M	ore In	fo		10
		2/10	כ	2
Point Id	:	10	כ	
Pt. Status	:	Point0	1	
Error flag	:	NON	E	
ΔHz	:	0°00'03		
∆Dist.	:	0.05) m	
RECLC <	>	IMEAS DEL		ACK
ΔHt	:	0.020) m	
Refl. Ht.	:	1.55	5 m	
East	:	991.427	7 m	
North	:	1995.162	2 m	
Elevation	:	402.466	5 m	

2/10

Sequence number of the current point and total number of points in the measurement set. The scroll bar shows the sequential position of the measurements, graphically.

Status

Use this measurement for calculation (ON/OFF).

Pt. Status

- ON Measurements to target point used for calculation.
- Ignore Elev.

Target point elevation disabled: measurements for elevation determination not used in calculation.

OFF Target point disabled: measurements to point NOT used for calculation.

Error Flag

Identified erroneous measurements. Possible values are:

NONEmeasurement is OKHZhorizontal angle errorDISTdistance errorHTheight difference errorThe flags may also be combined, i.e.

DIST + HZ

16

ΔHz.

Difference between calculated and measured horizontal angle

Δ Distance

Difference between calculated and measured distance

∆ Height

Difference between calculated and measured height

Refl. Ht.: Reflector height used for the target point Easting, Northing, Elevation:

Target coordinates used

Refl. Ht.

Reflector height used for the target point

East, North, Elevation Target coordinates used.

Scroll to the measurements of the previous point.

Recalculate the result.

F3 Scroll to the measurements of the following point.

۲

Measure more points. Return to the dialog "Target Point".

Delete a point from the set of measurements. You can now measure a new point in its place.

Return to the results dialog without changes.

Exit the program.

Plot

Generates a plot showing the measurement configuration. The station point is in the center and the top of the sketch shows the direction of grid north. The sketch is true in angular but not true in distances.

Points are numbered sequentially in the order in witch they were measured.

Points not used in the calculation are marked with a dotted line.

F1 Recalculate the result and return to the dialog "CALCULATION RESULTS".

Orientation and Height Transfer

Plot, continued

Configuration

Toggle any point ON or

OFF by pressing the numeric key corresponding to the sequence number of the point.

Note, that \circ represents point 10.

Exit the program.

Depending on the configuration that is loaded onto your TPS1100 instrument, you may not see some or all of the options referred to below. See your Leica Geosystems dealer for more information about the configuration of your instrument.

Configuration Editor

Start the "Configuration Editor" from the

"TARGET POINT" dialog.

0ri\	Configur	ration		10
Hz Ori. A	Acc :	0°00'3	2"	
Ht Acc TF	· :	0.02	50 m	
Pos Acc T	TP :	0.02	50 m	
Tow faces	; ;	I	NO 🔻	
User Disp). :	I	NO V	
Log File	:	0	FF 🔻	
CONT		DFL	ΤIΙ	NFO
Log FlNam	ie :	ORIENT.L	DG	
Meas Job	:	FILE01.G	SI 🔻	
Data Job	:	FILE02.G	SI V	
SHIFT		QU	tT .	
• F1 •	F2 F3	F4	F5	• F6

The "Configuration Editor "sets parameters for further program operations:

Hz Ori Acc

Limit for the standard deviation of the orientation. The orientation is regarded as "error free", if the computed standard deviation of the orientation is within twice the entered value.

Ht Acc TP

Height accuracy of the target points. The entered value, is used as an "a priori" accuracy in the calculation. The height is regarded as "error free", if the computed standard deviation is within twice the entered value.

Pos Acc TP

Position accuracy of the target points. The entered value, is used as an "a priori" accuracy in the calculation. The position is regarded as "error free", if the computed standard deviation is within twice the entered value.

Two Faces

YES for dual-face measurement. NO for single-face.

User Disp

YES: The same display mask as the one used in the system measurement dialog (MEAS) is used for measurements with "Orientation and Height Transfer".

NO: The "Orientation and Height Transfer" default display applies.

Loa File

ON, records measurements in a Log-File. The format is described in chapter "Log file".

Log FIName Enter the Log File Name.

Meas. Job

Selection of the measurement job for recording measurements.

Data Job

Selection of the data job containing the fix point coordinates (control data).

Set the values to default.

Displays date and version.

Exit the program.

Dual-face Measurement

Log file

In the dual-face mode, the program will prompt for measurements in both faces. When both measurements are taken, the program will check the difference between the two. If the difference in angle is within **27' (0.5 gon)** and the difference of two measured distances is within **0.5 m (1.64 ft)**, the observations will be averaged. These tolerances are used to avoid errors in target identification. If exceeded an error message will be displayed. If **"Log File"** is set to **"ON"** the measurements and the results are stored in the ASCII-file specified within the "Configuration Editor". This file is created in the directory LOG on the memory card. Subsequently, you can read the memory card on your PC and obtain a hard copy of the Log-file.

Data will always be appended to the specified Log-file.

The Log-file contains the following information:

Header

The header line will contain the program used, information about the instrument, the name of the data file as well as date and time.

Record

For each measurement, a record will be stored containing:

- Station coordinates
- station height,
- orientation correction
- standard deviations for height and orientation correction

The residuals for:

- horizontal angles,
- · heights and
- measured distances are also listed.

Log file, continued

Leica Geosystems Program Orientation and Height Transfer V 1.00					
Instrument : TCA1103, Serial 102999					
Meas. File	: MYF	ILE.GSI			
Program Start	: 20/0	4/1998 at 09:4	2		
Station no.	: 2000 E= - hi= ^) 0.0006m N= -(1.6000m	0.0002m ELV=	= 398.3961m	
Using Robust So	lution				
Station Elev. Ori.Corr. S.Dev. Elev. S.Dev. Orient.	: 398. : 40'3 : 0.00 : 0°00	3929m 6")35m)'04"			
3 point(s) measu	red :				
## Point no.1 5002 5013 502	Δ Hz -0°00'55" -0°00'48" 0°00'52"	∆ Height 0.0026m 0.0044m -0.0070m	∆ Distance 0.0020m 0.0016m -0.0000m	Error Flag NONE NONE NONE	

Typical log file entry in the "Orientation and Height Transfer" program

Resection

Introduction

This manual describes the "Resection" program of the TPS1100 Professional Series.

The program can be used to reduce the three-dimensional coordinates for the instrument station and the orientation of the horizontal circle from measurements to 2 target points with know Easting and Northing. To compute the position coordinates, at least the distances and the directions for both points are necessary. For simultaneous determination of the station elevation, height of instrument and height of reflector must already have been input and the elevation of the target points must be known.

The program allows measurement in single or dual-face mode.

Station Data

Enter station point number and height of the instrument.

Target Point

Measure Mode

Enter the target point number and height of the reflector.

Search the coordinates of the F1 \odot point entered from the active data job and go to the measure mode.

Search and display the coordinates of the point found in the active data job.

This dialog is similar to the TPS1100's basic "Measure Mode" dialog. Once a measurement is taken, the program will return to the dialog "Target Point" to acquire the next point for measuring.

	Resec Point Hz V Refl. Slope	Id Ht. Dist	Weasu : : : t:	re 28 9	6°58 1°16	5'50 5'20 0.0	1 ,, 00 r	n	MC
	ALL	DIST	RE	C	CONT	TA	RGT		
SHIFT					I<>I:	I		QUIT	Г
	• F1	● F	⁼ 2	F3	۴ ۲	-4	F5	● F	-6

Simultaneously measure and record data in the active measurement job. Return to the dialog "TARGET POINT".

Measure a distance.

Record the measurement in F3 the active measurement job. Return to the dialog "TARGET POINT".

Accept the measurement and return to the dialog "Target

Enter target data. (See User Manual)

Change the theodolite SHIF. ۲ face.

Exit the program.

Calculation

In this dialog the calculated station coordinates are shown with the orientation.

	Resec	Results	(L.Sqrs)		2
	Station I	d :		1	2
	No. of Pt	5:		2	
	Inst. Ht.	:	1.6	35 m	
	East	:	2134.2	34 m 🛛	
	North	:	4231.3	65 m 🛛	
	Elevation	:	580.6	43 m 🛛	
	SET	STADE			MD
		JOIONE			
	Hz Ori.	:	2°12'34	,,	
	σEast	:	0.0	D3 m	
	σNorth	:	0.0	D5 m	
	σElev.	:	0.0	D5 m	
	σHz Ori.	:	0°00'03	,,	
SHIF	Т				
		2 E3	EA	E5	EG
		2 0 13	6 4 6		10

Station Id

Station point number

No. of Pts Number of points measured

Inst.Ht. Instrument Height

East

Calculated Easting for the station.

North

Calculated Northing for the station.

Elevation

Calculated elevation for the station

Hz Ori. Oriented direction

σEast

Standard deviation of Easting

σNorth

Standard deviation of Northing

σElev

Standard deviation of the Elevation

σHz Ori.

Standard deviation of the Orientation

Set orientation and station coordinates on the instrument.

job:

11	Station Point Number
25	Orientation correction
84	Station Easting
85	Station Northing
86	Station Elevation
87	Last reflector height used
88	Instrument Height
	11 25 84 85 86 87 88

Compare the Resection

results to the station

coordinates and orientation currently set in the instrument.

Exit the program.

24

Compare results

The comparison function compares the station coordinates and the orientation calculated by the program to the station coordinates and the orientation currently set in the instrument.

Resec\ (Compare	Results		Ð
Station Io	1:	1		Σ
∆0ri.	:	0°00'05"		
∆East	:	-0.002	2 m	
∆North	:	0.006	5 m	
ΔHt.	:	-0.020) m	
Fix East	:	2134.236	5 m	
CONT				
Fix North	:	4231.359	m	
Fix Elev.	:	580.663	m	
Calc.East	:	2134.234	m	
Calc.North	:	4231.365	m	
Calc.Elev.	:	580.643	m	
Т			QUI	Т

∆Ori

Orientation difference between the calculated orientation and the orientation set in the instrument.

∆East

Difference between the calculated Easting of the station and the Easting set in the intrument. (Calc. East - Fix East)

∆North

Difference between the calculated Northing of the station and the Northing set in the intrument. (Calc.North - Fix North)

∆Ht.

Difference between the calculated Elevation of the station and the Elevation set in the intrument. (Calc.Elev. - Fix Elev.)

Fix East

Easting coordinate of the station currently set in the intrument.

Fix North

Northing coordinate of the station currently set in the intrument.

Fix Elev.

Elevation of the station currently set in the intrument.

Calc. East

Easting coordinate of the station calculated with resection.

Calc.North

Northing coordinate of the station calculated with resection.

Calc.Elev.

Elevation of the station calculated with resection.

Return to the results dialog.

Configuration

3

Depending on the

configuration that is loaded onto your TPS1100 instrument, you may not see some or all of the options referred to below. See your Leica Geosystems dealer for more information about the configuration of your instrument.

Configuration Editor

Start the "Configuration Editor" from the "Station

DATA" dialog.

Resec\ Hz Ori.Ad	Configura cc: P :	ation 0°00'32' 0.02	, , 5 m	MC
Pos Acc Two Face User Dis	TP: s:	0.02 N	5 m 0 ▼ 0 ▼	
Log File		OF Deed	F V	FO
Log FlNar Meas Job Data Job	ne: : F : F	RESEC.LO ILEO1.GS ILEO2.GS	G I ▼ I ▼	
SHIFT F1	F2 F3	• F4 •	F5	F6

The "Configuration Editor" sets parameters for further program operations:

Hz Ori Acc

Limit for the standard deviation of the orientation. The orientation is regarded as "error free", if the computed standard deviation of the orientation is within twice the entered value.

Ht Acc TP

Height accuracy of the target points. The entered value, is used as an "a priori" accuracy in the calculation. The height is regarded as "error free", if the computed standard deviation is within twice the entered value.

Posn Acc TP

Position accuracy of the target points. The entered value, is used as an "a priori" accuracy in the calculation. The position is regarded as "error free", if the computed standard deviation is within twice the entered value.

Two Faces

YES for dual-face measurement, NO for single-face.

Configuration Editor, continued

UserDisp.

- YES The same display mask as the one used in the system measurement dialog (MEAS) is used for measurements with "RESECTION".
- The "RESECTION" default NO display applies.

Log File

Set to **ON**, the program will record measurement data in a log file as described in chapter "Log File".

Log FIName

Enter the Log File Name.

Meas. Job

Selection of the measurement job for recording measurements.

Data Job

Selection of the data job containing the fix point coordinates (control data).

Store the current configuration and proceed to the dialog "STATION DATA".

Set the value to the default

Displays date and version.

Exit the program.

In the dual-face mode, the program will prompt for measurements in both faces. When both measurements are taken, the program will check the difference between the two. If the difference in angle is within 27' (0.5 gon) and the difference of two measured distances is within 0.5 m (1.64 ft), the observations will be averaged.

These tolerances are used to avoid errors in target identification.

If exceeded an error message will be displayed.

Dual-face Measurement

Log File

If "Log File" is set to "ON" the measurements and the results are stored in the ASCII-file specified within the "Configuration Editor". This file is created in the directory LOG on the memory card. Subsequently, you can read the memory card on your PC and obtain a hard copy of the Log-file.

Data will always be appended to the specified Log-file.

The Log-file contains the following information:

Header

The header line will contain the program used, information about the instrument, the name of the data file as well as date and time.

Record

For each measurement, a record will be stored containing: Station coordinates and orientation correction, standard deviation for Easting, Northing, Height of station and orientation correction. The residuals for horizontal angles, heights and measured distances are also listed

Log File, continued

Leica Geosystems Instrument Meas. File Program Start	Program	am Resection V 1.00 TCA1103, Serial 102999 MYFILE.GSI 20/04/1998 at 09:42			
Using Least-Square	es Solut	ion			
Station no.	:	2000 E= -0.0011m hi= 1.6000m	N= -0.0006	m ELV= 398.3	9951m
Ori.Corr. S.Dev. East S.Dev. North S.Dev. Elev. S.Dev. Orient.	;	240°50'51" 0.0003m 0.0003m 0.0047m 0°00'49"			
2 point(s) measured:					
## Point no.1 5002 501	∆ -0°00'5 -0°00'1	Hz ∆ Heig 5" 0.0047 8" -0.0047	ht ∆E m C m C	Distance).0001m).0002m	Error Flag NONE NONE

Typical log file entry in the "Resection" program

Tie Distance

Introduction

This manual describes the "Tie Distance" program of the TPS 1100 Professional series.

The program calculates the length and azimuth of a line connecting two points.

Polygonal or Radial methods can be used as shown in the illustrations.

The data for the points can either be measured or retrieved from the selected data job. Measured points and points retrieved from the selected data job can be used together in the calculations, if the station coordinates and orientation are set correctly.

Polygonal Mode

In Polygonal Mode, the program will calculate the distance between the last two points measured (eg. Pt3 - Pt4).

Radial Mode

In Radial Mode, the program will calculate the distance between the last point measured (called a Radial Point) (Pt2, Pt3 ...) and a fixed Center Point (Pt1).

Toggling between Polygonal and Radial Mode at any time while working is possible.

Measure Mode

This dialog is used in accordance with the settings of the system function "Measure & Record" or according to the dialog shown below.

TieD	First	Point		- 0
Point Id	:		546	
Refl. Ht	. :	1	.654	m
Hz	:	230°45'	23''	
V	:	4°52'	35''	
Slope Di	st:	-		m
Ht. Diff	. :	-		m
ALL DIS	TRE	C CONT	TARGT	IMPORT
East	:	-		m
North	:	-		m
Elevation	ı:	-		m
	IF	I<>II	VIEW	QUIT
• F1	F2	F3 F4	F5	5 F6

The input for the start point is only possible after the program start or with the function \mathbf{F}^2 in the dialog "RADIAL MODE".

For all following points the program requests (NEXT POINT). The dialog for the following points is identical with dialog above, except

Simultaneously measure and record in the active

measurement job. Proceed with the dialog "NEXT POINT". If the second point has already been measured, the program will proceed to the "Result" dialog.

Measure a distance. Record the

measurement in the active measurement job and proceed with the dialog "NEXT POINT". If the second point has already been measured, the program will proceed to the "RESULT" dialog.

- F2 F4
- Measure the distance. Accept the

measurement without recording. If the second point has already been measured, the program will proceed with the "RESULT" dialog.

31

Enter the target data. (see User Manual)

Import target coordinates.

Start the "Configuration Editor".

SHIFT		
۲		۲

Change the theodolite face.

Exit the program

for the title

Results

SH

This dialog shows the results computed from the last two points, which can be measured or retrieved from the active file. The same results are calculated for both methods. Using "Polygon Mode" the calculations are always based on the last two points, where as the "Radial Mode" always uses the first point as a reference point.

TieD\ Rad	ial Mod	e (a dì
Center Pt	:	12	
Radial Pt	:	13	
Hori.Dist	:	4.567	
Azimuth	: 34	2°52'35''	
∆Height	:	2.543	
Slope Dist	:	4.946	
NEXT RESET	STORE	POL V	
	Torone	, ve i	
∆East	:	22.432	
ΔNorth	:	50.083	
T			QUIT

F2 F3 F4

F5 F6

∆ Height

Azimuth

Center Pt.

Radial Pt.

Hori.Dist

points

Height difference between point 1 and point 2 (H2 - H1).

Point number of the center point

Point number of the radial point

Horizontal distance between the two

Slope Dist

Slope distance between the two points.

∆ East

Difference in Easting between point 1 and point 2 (E2 - E1). The grid coordinates are only valid for oriented instruments set up on a known point.

Δ North

Difference Northing between point 1 and point 2 (N2 - N1). Note, the grid coordinates are only relevant for oriented instruments set up on a known point.

F1

Return to the dialog "NEXT POINT" and measure the next point.

	F

Delete previous inputs.

Proceed with the dialog "FIRST POINT" to enter a new reference point. This function is available for "RADIAL MODE" only.

Record the following results in the active measurement

- WI 11 Point number of point 2 or radial point number
- WI 25 Azimuth from point1 to point 2
- WI 35 Horizontal distance

Results, continued

 \odot

Configuration

- Height difference between WI 37 point 1 and point 2
- WI 39 Slope distance
- WI 79 Point number of point 1 or center point number

Toggle between Radial/ F5 Polygon Mode.

Depending on the configuration that is loaded onto your TPS1100 instrument, you may not see some or all of the options referred to below. See your Leica Geosystems dealer for more information about the configuration of your instrument.

Configuration Editor

Start the "Configuration Editor"

from the "First Point" dialog.

TieD Two Fa User D Log Fi Log F1 Meas J	Confi ces : isp.: le : Name: ob :	guration TIEDIST FILE01	NO ▼ NO ▼ Off LOG GSI ▼	
	F2	F3 F4	EFLT E	INFO QUIT

The "Configuration Editor" sets parameters for further program operations:

Two Faces

YES for dual-face measurement. NO for single-face.

TPS1100 - Appl. Prog. Ref. Manual 2.2.0en

Configuration Editor, continued

User Disp

- YES The same display mask as the one used in the system measurement dialog (MEAS) is used for measurements with "Tie Distance".
- The "Tie Distance" default NO display applies.

Log File

Set to ON, the program will record measurement data in the Log File according to the format described on chapter "Log File".

Log FIName

Enter the Log File Name.

Meas. Job

Selection of the measurement job for recording measurements.

Data Job

Selection of the data job containing the fix point coordinates (control data).

Store the current F1 configuration and proceed to the dialog "MEASURE MODE".

Set the values to default.

Displays date and version of the running application.

Exit the program.

Dual-face Measurement

In the dual-face mode, the program will prompt for measurements in both faces. When both measurements are taken, the program will check the difference between the two. If the difference in angle is within 27' (0.5 gon) and the difference of two measured distances is within 0.5 m (1.64 ft), the observations will be averaged. These tolerances are used to avoid errors in target identification. If exceeded an error message will be displayed.

Log File

If "Log File" is set to ON the measurements and the results are stored in the ASCII-file specified within the "Configuration Editor". This file is created in the directory LOG on the memory card. Subsequently, you can read the memory card on your PC and obtain a hard copy of the Log-file.

The Log-file contains the following information:

Header

The header line will contain the program used, information about the instrument, the name of the data file as well as date and time.

Record

For each measurement, a record will be stored containing : Point No 1, Point No. 2, Hori. Dist., Azimuth, Δ Height, Slope Dist.

Log File, continued

Leica Geosystem	s	Program Tie Distance	e V 1	.00	
Instrument	:	TCA1103, Serial 102	2999		
Meas. File	:	MYFILE.GSI			
Program Start	:	20/04/1998 at 09:42			
Station no.	:	1151			
		E= 0.0000m	N=	0.0000m	ELV= 400.0000m
		hi= 0.0000m			
Point No.1	:	1020			
		E= -31.2368m	N=	-0.2083mELV=	400.0626m
Point No.2	:	1030			
		E= -30.5679m	N=	-17.8404m	ELV= 403.1198m
Point no.1	:	1020			
Point no.2	:	1030			
Hori.Dist.	:	17.6448m			
Azimuth	:	197°58'40"			
∆Height	:	3.0572m			
Slope dist.	:	17.9077m			
Point No.2	:	1040			
		E= -57.7040m	N=	-0.4265m	H= 400.1028m
Point No. 1	:	1030			
Point No.2	:	1040			
Hori.Dist.	:	32.2430m			
Azimuth	:	336°32'14"			
∆Height	:	-3.0170m			
Slope dist.	:	32.3839m			

Typical log file entry in the "Tie Distance" program (Polygonal Mode)
Stakeout

Introduction

This manual describes the "STAKEOUT" program of the TPS 1100 Professional series. The program is used to place marks in the field at predetermined points.

"STAKEOUT" requires the instrument to be set up on a known point with the instrument oriented. The station point can be determined also with the programs "FREE STATION" and "RESECTION".

The easting and the northing of the point to be staked must be known. The elevation is optional: the program permits selection of either 2D or 3D stakeout modes. It is also possible to stake out points given the azimuth and the distance from the station.

The points to be staked can either be retrieved from the selected data job or entered manually.

Search Point

The "SEARCH POINT" dialog informs about the active recording device, the active measurement job for data storage and the present point/code.

Search the coordinates of the F1 point entered in the active data job. Proceeds to the Coarse Positioning mode. Depending on the configuration of the stakeout method, the program may proceeds to the Stake mode.

Manually enter the azimuth and the distance to the point to be staked.

Manually enter the stakeout point.

Search and display the F5 coordinates of the point found in the active data job.

Allows program configuration.

If the instrument is in LOCKmode with FDM-mode TRK/ RTRK and no Coarse Mode selected, pressing F1: SEARC starts the distance measurement.

Manual Stakout

Manual Stake allows to enter a point given the azimuth and the distance. The azimuth and the horizontal distance from the station to the point to be staked must be entered manually.

	STAK: Poin	t Id	Manı	ial E	ntry	– () 1	
	Azim	uth	:		°'	''	
	Hori	z.Di	st:				m
	Eleva	atio	n:				m
	STAKE						
SHIFT	1						QUIT
•	F	1	F2	F3	• F4	F 5	F6

Point Id

point Id of the point to be staked.

Azimuth

Azimuth from the station to the point to be staked.

Horiz.Dist

Horizontal distance from the station to the point to staked.

Elevation

Elevation of the point to be staked.

Confirms the entry and proceeds to the Coarse Positioning mode. Depending on the configuration of the stakeout method, the program may proceed to the Stake mode.

Coarse Positioning

Once the coordinates of the stakeout point have been acquired, the program proceeds to "Coarse Positioning".

Coarse positioning is an optional step for approximate positioning, preceeding the iterative stakeout process. It may be used to direct the rod person from the point that has just been staked to the next point.

The "Coarse Positioning" calculates various displacements, depending on the selected mode.

- Line Offset
- Orthogonal
- Azimuth and Distance

If instrument is in LOCKmode with EDM-mode TRK/ RTRK, pressing F1: STAKE from a Coarse Mode starts a distance measurement.

Line Offset

The stakeout values of each point are computed in relation to the base formed by the last two points. If the elevation is known for the point to be staked out, the height difference in relation to the last base point (Pt2), is displayed. In particular, this method is advantageous for long objects (traffic routes).

Values for positioning are only displayed after two stakeout points.

	STAKE Point Azimut Hz Line Offset AHeigh STAKE	Lin Id : h : : : :	e Off	set 90°10' 98°34' 4 1 0	12 02'' 45'' .105 .250 .340	m m m	MC
SHIFT	F1	F2	• F3	PLOT F4	• Ft	5	F6

Point Id

Point Id of the point to be staked.

Azimuth

Azimuth from the station to the point to be staked.

Hz

Present theodolite direction. Note, if the instrument is oriented and the azimuth and Hz angle are corresponding, the instrument is pointing to the point to be staked.

Line

Distance along the line defined by the last two points staked.

Offset

Orthogonal offset from the defined line.

∆Height

Height difference from the last point staked.

Proceed to "STAKEOUT". Motorized theodolites can drive the telescope to the horizontal and vertical direction of the point to be staked.

SHIFT	
۲	

Change stakeout method. For more

information refer to chapter "Select Stakeout Method".

Generate a plot of the stakeout data. For

more information to chapter "Plot".

Orthogonal

Setting out values are computed as orthogonal coordinates to the baseline between instrument station and prism. If the elevation is also known, ΔH is given in relation to the last prism - point measured. Note, data will be displayed if there is at least one point measured.

Point Id

Number of the point to be staked.

Azimuth

Azimuth from the station to the point to be staked.

Hz

Present theodolite direction. Note, if the instrument is oriented and the azimuth and Hz angle are corresponding, the instrument is pointing to the point to be staked.

 Δ Length and Δ Cross in relation to the baseline: last stakeout point - instrument station.

∆ Length

In-line distance Δ Length is positive for points further than the last prism position measured.

Δ Cross

Distance perpendicular to the baseline. $\Delta Cross$ is positive for points on the right of the baseline.

∆ Height

Height difference from the last point measured.

Motorized theodolites can drive the telescope to the horizontal and vertical direction of the point to be placed.

Change stakeout method.

For more information refer to *chapter* "Select Stakeout Method".

Generate a plot of the stakeout data.

For more information on *chapter* "*Plot*".

SHIFT	
۲	C

Exit the program.

F4

Azimuth and Distance

This mode defines the point to be staked in terms of the azimuth and distance from the theodolite station to the point.

STAKE\Azimuth and Distance MC Point Id 12 Azimuth 30°03'23'' Ηz 15°43'02' Slope Dist: 35.60 m Horiz Dist: 34.97 m ∆Height 0.75 m STAKE SHIFT ۲ F5 F3 F4 F1

Point Id

Point Id of the point to be staked.

Azimuth

Azimuth from the station to the point to be staked.

Hz

Present theodolite direction.

Note, if the instrument is oriented and the azimuth and Hz angle are corresponding, the instrument is pointing to the point to be staked.

Slope Dist

Slope distance from the instrument station to the stakeout point.

Horiz, Dist

Horizontal distance from the instrument station to the stakeout point.

∆ Height

Height difference from the instrument station to the stakeout point.

Change stakeout method.

For more information refer to chapter "Select Stakeout Method".

Generate a plot of the stakeout data For more information to chapter "Plot".

Stakeout

Polar Stakeout

Various methods can be used, depending on the Stakeout Mode set.

- Polar stakeout
- Orthogonal Stakeout
- Stakeout with auxiliary point
- Stakeout from Coordinates Differences (Grid coordinates)

For more information refer to chapter "Select Stakeout Method". Motorized instruments can drive the telescope to the horizontal and vertical direction of the point to be staked. After the first distance has been measured, the differences between calculated and measured direction and between calculated and measured horizontal distance are displayed.

If the elevation of the point to be staked is available, the height difference between the last measured reflector and the point to be staked is shown together with the measured elevation of the reflector point.

Values for ΔHz and $\Delta Dist$ will be updated each time a new distance is measured.

Point Id

Point Id of the point to be staked.

Refl. Ht

Reflector height used at target point.

ΔHz

Difference in Hz circle reading between the actual horizontal direction and the calculated direction.

∆ Dist

Difference in horizontal distance between the measured and calculated distance.

∆ Height

Difference in height between the measured reflector point and the stakeout point, expressed both numerically and as CUT/FILL.

Elevation

Elevation of the measured target point.

Simultaneously measure and record data in the

measurement job.

stake.

Record the measurement in the measurement job.

Acquire the next point to

F4 \bigcirc

Enter target data.

Measure a distance.

Re-position the telescope on the target. Note, this function is only available for motorized theodolites.

Change stakeout method. For more information refer to chapter "Select Stakeout Method"

Generate a plot of the stakeout data. For

more information refer to chapter "Plot".

F4

Orthogonal Stakeout

Orthogonal offsets are computed using the baseline between the last measured point and the instrument station.

After the first distance measurement, the transverse and longitudinal differences are displayed. If the elevation of the stakeout point is available, the height difference between the measured reflector and the point to be staked is shown, and also the measured elevation of the reflector point.

Values for $\Delta Cross$ and $\Delta Length$ will be updated each time a new distance is measured.

	STAKE Point Refl. ∆Cross ∆Leng† ∆Heigl Eleva†	Id Id Ht. s th ht tion	`thogon : : ▼ : ► :FILL :	1a1 1 - 1 0 0	12 1.65 .430 .550 .982 .750	
	ALL	DIST	REC	CONT		POSIT
		METHD		PLOT		QUIT
•	• F1	• F2	• F3	• F4	• F5	• F6

Point Id

Point Id of the point to be staked.

Refl. Ht

Reflector height used at target point.

Δ Cross

Transversal displacement of the reflector. Positive in sign if point is right.

∆ Length

Longitudinal displacement of the reflector. Positive in sign if stakeout point is further away from station.

∆ Height

Difference in height between measured reflector point and the stakeout point. Positive in sign if stakeout point is higher than the reflector position.

Elevation

Elevation of the measured reflector point.

Simultaneously measure and

record data in the measurement job.

Measure a distance.

Orthogonal Stakeout, continued

Record the measurement data in the measurement job.

Acquire the next point to stake.

Enter target data.

Re-position the telescope on the target. Note, this function is only available for motorized theodolites.

SHIFT

Change stakeout method. For more

information refer to chapter "Select Stakeout Method".

Generate a plot of the F4 stakeout data. For

more information refer to chapter "Plot".

Exit the program.

This mode computes values for points which cannot be sighted directly.

Measure to the auxiliary point Pt1. The distance "Dist 1" and angle "Hz angle 1" to the stakeout point are computed. Likewise proceed for auxiliary point Pt2. The stakeout point can be set out using the 2 calculated distances and/or angles from auxiliary points Pt1 and Pt2.

The program automatically updates both distance and angle values whenever a new point is measured. The previous point Pt2 becomes Pt1 and the new point Pt becomes Pt2.

Note, the auxiliary point to be measured will be marked with an asterisk (*).

Stakeout with auxiliary points, continued

Point Id

Point Id of the point to be staked.

Refl. Ht

Reflector height used at target point

Hz Anale 1

Angle from the first auxiliary point to the stakeout point.

Dist 1

Distance from the first auxiliary point to the stakeout point.

Hz Angle 2

Angle from the second auxiliary point to the stakeout point.

Dist 2

Distance from the second auxiliary point to the stakeout point.

∆ Heiaht

Difference in height between the last measured reflector point and the stakeout point. Positive in sign if stakeout point is higher than the reflector position.

Simultaneously measure and record data in the

measurement job

Measure a distance.

Record the measurement in the measurement job.

Enter target data.

Re-position the telescope on the target. Note, this function is only available for motorized theodolites.

Change stakeout method

For more information refer to chapter "Select Stakeout Method".

Generate a plot of the stakeout data. For

more information refer to chapter "Plot".

F4

Stakeut from Coordinate Differences

After the first distance measurement, the displacements along the grid coordinate axes are displayed. If the elevation of the point to be staked is available, the height difference between the measured reflector and the stakeout point is shown as well as the measured elevation of the reflector point.

Values for $\Delta East$ and $\Delta North$ will be updated each time a new distance is measured.

	STAKE Point Refl. AEast ANorth AHeigt Elevat	Id Ht. n th	Grid : : : :F1	Cool	rdinat 1 -1 0 0	es 12 1.65 .430 .550 .982 .750	m m m m m	MC
l	ALL	DIST	R	C	CONT		PO	SIT
SHIFT		METH	D			I<>II	QL	JIT
	F1		F2	F3	F 4	F	5	F6

Point Id

Point number of the point to be staked.

Refl. Ht

Reflector height used at target point

∆ East

Displacement of the reflector along the East-coordinate axis.

∆ North

Displacement of the reflector along the North-coordinate axis.

∆ Height

Difference in height between the measured reflector point and the stakeout point. Positive in sign if stakeout point is higher than the reflector position.

Elevation

Elevation of the measured reflector point.

Stakeut from Coordinate Differences, continued

Simultaneously measure and record data in the

measurement job.

Measure a distance.

Record the measurement in the measurement job.

Acquire the next point to stake.

Enter target data.

Re-position the telescope on the target. Note, this function is only available for motorized theodolites.

Change stakeout method.

For more information refer to chapter "Select Stakeout Method".

Generate a plot of the stakeout data. For

more information refer to chapter "Plot".

Exit the program.

Select Stakeout Method

Select the stakeout method in any stakeout

dialog.

	STA Coa Sta Aut Ht. Gra Syn	KE ars ake to o aph abo	eMo Mod Pos ffs ics ls POI	Se de: e: et: : AR	POI POI FI	III LII LAR	ST ST AU	Dd OF FAK 0 FA.	FSE EOU 2000 2000 2000 2000 2000 2000 2000 20	T 2D 2D 2D 2D	▼ ▼ ■ ▼ ▼	MC
SHIFT	۲	F1	۲	F2	۲	F3	۲	F4	۲	F5	QU	IT F6

Coarse Mode Select the mode for "COARSE POSITIONING": NONE no Coarse mode used LINE OFFSET see chapter "Line Offset" ORTHOGONAL see chapter "Orthogonal" **AZIMUTH & DISTANCE** see chapter "Azimuth and Distance"

Select Stakeout Method, continued

Choosing **NONE**, the program will automatically proceed to the selected "STAKEOUT METHOD" and bypass the "COARSE POSITIONIG" method after you selected a new stakeout point.

StakeMode

Select the mode for "STAKEOUT ":

POLAR **STAKEOUT** see chapter "Polar Stakeout" ORTHOGONAL STAKE see chapter "Orthogonal Stakeout" AUXILIARY POINTS see chapter "Stakeout with auxiliary points" GRID COORDINATES see chapter "Stakeout from Coordinate Differences"

Auto Pos.

Select positioning method.

(Motorized instruments only):

- Off Automatic positioning off
- 2D Positioning of the horizontal drive
- **3D** Positioning vertical and horizontal drive

Ht. Offset

The height offset is added to the design elevations of the points to staked. CUT and FILL values refer to the elevations modified by the offset. The value can be changed only when you are in this dialog.

Graphics

Choose additional graphic displays: The graphics show the relative positions of the station (\bigcirc), the reflector (+) and the required point (). At the largest scale, the dimension of the graphics represents an actual value of about one metre. The scale is automatically altered in steps (5m, 20m etc.) in accordance with the distance of the reflector from the required point.

These graphics are particularly suitable for use in conjunction with the RCS1000 remote-control system. Depending on the particular application, the control unit at the target point can be moved towards the station or away from it, or orientated northwards or southwards. The direction from the current station (reflector) towards the required point is then the true one, and the required point can be quickly located by moving the reflector in the direction of the required point, as displayed in the graphics.

Select Stakeout Method, continued

Following Graphics settings are possible:

• OFF:

No graphics are displayed.

• From Station

The graphics are oriented from the instrument station to the point to be staked. This mode is recommended for guiding the rod person from the station.

• To Station

The graphics are oriented from the current reflector position to the station. This mode is adapted if working in the polar or orthogonal stakeout mode and in RCS mode.

• To North

The graphics are oriented to the North.

This mode is recommended for stakeout in RCS mode and in the grid coordinates mode.

• From North

The graphics are oriented to the South.

This mode is recommended for stakeout in RCS mode and in the grid coordinates mode.

Example: Polar Stakeout

These graphics appear after a distance measurement. No graphics of this type are available in the method "Setting out with help points".

Select Stakeout Method, continued Plot

Symbols

Arrows may be used to guide the rod person to the point to be staked.

Select the display mode of symbols in the stakeout dialog:

• From Sta. (v .)

Guidance of the rod person from the instrument station.

• To Sta. (🔺 🔻)

Guidance at the rod, in relation to the instrument station (e.g. if working in RCS mode).

• NONE

Symbols are not used.

A plot is generated of the stakeout situation with display of the stakeout values, corresponding to the "STAKEOUT METHOD".

Note, below a typical plot is shown using the coordinate "STAKEOUT METHOD".

	S	TAKE	\		P	lot						MC	
		Δ١	E	PS			E :		0.02	24	m	_	
			N			4	•			12	"		
	R	<u> </u>	•										
											QU	IT	,
۲		F1	۲	F2	۲	F3	۲	F4	۲	F5	۲	F6	

Configuration

Depending on the configuration that is loaded onto your TPS1100 instrument, you may not see some or all of the options referred to below. See your Leica Geosystems dealer for more information about the configuration of your instrument.

SHIF®	n the	F2 SE	Sta "Co ARC	art th onfig CH P	ne gurati POIN ⁻	ion E Γ" dia	dito	or" J.
	STA 3D S Log Log Meas Data	KE Stake File Flnar S. Job	Conf : ne: : :	IGULA STA F ALN	KEOUT ILEO1 FILEO	ON OFF .LOG .GSI .GSI	V V V V	MC
	CON					DEFLT	IN	FO
SHIFT]						QU	IT
		F1	F2	F3	• F4	● F	5	F6

The "Configuration Editor" sets parameters for further program operations:

Configuration. continued

3D Stake

ON for 3-dimensional stakeout. Note the program will not perform 3D stakeout if no elevation is available for the point to be staked.

Store the current F1 configuration and proceed to the dialog "SEARCH POINT".

Set the value to default. $(3D \text{ stake} = \mathbf{ON}).$

F6 **Display software-version**

Exit the program.

SHIFT

Log File

OFF no recording in a Log file

- SHORT reduced recording in a Log file
- LONG detailed recording in a Log file

Meas. Job

Selection of the measurement job for recording measurements.

Data Job

Selection of the data job containing the fix point coordinates (control data).

Loa File

If "Log File" is set to "ON" the measurements and the results are stored in the ASCII-file specified within the "Configuration Editor". This file is created in the directory LOG on the memory card. Subsequently, you can read the memory card on your PC and obtain a hard copy of the Log-file.

Data will always be appended to the specified Log-file.

The Log-file contains the following information:

Header

The header line will contain the program used, information about the instrument, the name of the data file as well as date and time

Log File (cont.)

Record

SHORT recording of design coordinates, setout height and height difference in the log file.

Leica Geosystems Program Stakeout V1.00 Instrument : TCA1103, Serial 102999 Meas. File : MYFILE.GSI Program Start : 24/04/1998 at 18:26							
Station Point	:	1 E=100.000m 3, Ht. Offset =	N=100.000m 0.000m	H=40.000m	hi=1.560m		
Design	:	E=100.809m sH=39.861m	N=103.346m dh= -0.021m	H=39.840m hr=1.700m			

LONG recording of design coordinates, setout coordinates and differences of coordinates in the log file.

Leica Geosyst Instrument Meas. File Program Start	/stems Program Stakeout V1.00 : TCA1103, Serial 102999 : MYFILE.GSI art : 24/04/1998 at 18:28							
Station	: 1 E	=100.000m	N=100.000m	H=40.000m	hl=1.560m			
Point	: 3	, Ht. Offset =	0.000m					
Design	: E	=100.809m	N=103.346m	H=39.840m				
Staked	: E	=100.807m	N=103.344m	H=39.851m	hr=1.700m			
Deltas	: d	IE=0.002m	dN=0.002m	dH0-0.011m				

Typical log file entries in the "STAKEOUT" program

Free Station

Introduction

This manual describes the "FREE STATION" program of the TPS1100 Professional series.

This program can be used to deduce the three-dimensional coordinates for the instrument station and the horizontal orientation of the from measurements to a maximum of 10 target points.

For simultaneous determination of the station elevation, height of instrument and height of reflector must already have been input and the elevation of the target points must be known.

You may use target points with elevation only.

The program allows measurement in single or dual-face mode. Directions to target points can be determined, as can any combination of direction and distance. To compute the position coordinates, at least three elements (2 directions and 1 distance) are necessary.

Station Data

Enter station point number and height of the instrument.

Proceed to define the target points.

Target Point

F1

F2

 \odot

measure mode.

Point List

Enter the target point number and height of the reflector.

Search the coordinates of the

Define a list of target points

and the measurement

sequence. For further use: selection

of points from the list is possible.

target point from the

coordinates of the point entered in

the active data job and go to the

Displays the previous point from the list of points you entered. Note that this key will not be available until there is at least one point in the list.

Displays the next point in the list of points you entered. Note that this key will not be available until there is at least one point in the list.

 \bigcirc

Search and display the coordinates of the point found in the active data job.

Run the calculation. F6

Note, the key 56 will be

assigned after sufficient measurements were taken to calculate a position.

Enter a maximum of 10 points. The same point can be retrieved several times.

The same point number can be used several times without new input.

Fr	reSt∖	Point	List		– 9
Poi	int 1			TAR01	
Poi	int 2			TAR02	2
Poi	int 3			TAROS	3
Poi	int 4			TAR04	L
Poi	int 5			TAROS	5
Poi	int 6			TARO	5
CO	NT				
\subseteq					/
Poi	int 7			TAR07	•
Poi	int 8			TAROS	3
Poi	int 9			TAROS)
Poi	int 10			TAR10)
CUICT					
 Image: Image: Ima		_			GOT I
	F1	F2	F3	F4	F5 F6

Measure Mode

This dialog is similar to the TPS1100's basic "MEASURE MODE" dialog. Once a measurement is taken, the program will return to the dialog "Target Point" to acquire the next point for measuring.

If the station coordinates can be calculated successfully from the first few measurements, the Δ Hz and Δ V values are displayed for further entered target points. Motorized theodolites will automatically drive the telescope to the target point.

FreSt	Meası	ire		
Point 1	d:	1	2	2
Hz	: 28	36°55'50'	·	
V	: 9)1°16'20'	1	
Refl. H	lt. :	1.50	O m	
Slope [)ist:	22.03	9 m	
ΔHz.	:		- m	
	TOT L DEC L	CONT TAD	ا ۲۰	
		CONT TIAN		
T		I<>II	Q	JIT
F1	F2 F3	F4	E5	F6

Simultaneously measure and F1 record data in the active measurement job. Return to the dialog "TARGET POINT".

Measure a distance.

Record the measurement in the active measurement job. Return to the dialog "Target Point".

SHIFT

Accept the measurement and return to the dialog "TARGET

Enter target data. (see User Manual)

Change the theodolite face.

Exit the program.

Calculation

SHI ●

Calculates the 3D station coordinates and orientation as well as the standard deviation of the results.

FreSt\ Results	(L.Sqrs)
Station Id:	1 ▌ 鬯
No. of Pts:	6
Inst. Ht. :	1.635
East :	2134.234
North :	4231.365
Elevation :	580.643
SET	REL MEAS L MORE L COMP
Hz Ori. :	2°12'34''
σEast :	0.003 m
σ North :	0.005 m
σElev. :	0.005 m
σHz Ori. :	0°00'03''
Calc Scale:	YES 🔻
Scale :	0.999956
	PLOT QUIT
F1 F2	F3 F4 F5 F6

Station Id Point number assigned to the station

No. of Pts Number of points measured

Calculation, continued

Inst.Height Instrument Height

East Calculated Easting for the station

North Calculated Northing for the station

Flevation Calculated Elevation for the station

Hz. Ori Oriented direction

σ East Standard deviation of Easting

σ North Standard deviation of Northing

σElev Standard deviation of the Elevation

σ Hz. Ori Standard deviation of the Orientation

Calc Scale

YES scale factor is calculated. NO scale factor is not calculated Note that this parameter is displayed only if sufficient measurement were taken.

Scale

The scale factor of the free station calculation

Note that the scale is not shown if set to NO.

Set orientation and station coordinates on the

instrument.

Record the following results in the active measurement

job:

- WI 11 Station Point Number
- WI 25 **Orientation correction**
- WI 84 Station Easting
- WI 85 Station Northing
- Station Elevation WI 86
- WI 87 Last reflector height used
- WI 88 Instrument Height

Measure more points. The program will recall the "TARGET POINT" dialog.

Show the results of individual F5 ۲ measurements on the screen (see dialog "More Information").

Compare the Free Station results to the station coordinates and orientation currently set in the instrument.

SHIFT	F2
۲	۲

Select between the "Robust" method and

the Least Squares method.

	. 1		_
SHIFT			F
۲		۲	

Sketch of the station and the reference

points used.

Compare results

S⊢

The comparison function compares the station coordinates and the orientation calculated by the program to the station coordinates and the orientation currently set in the instrument.

FreSt\ Co	mpare	Results		
Station Id:			1	Ξ
∆0ri.		0°00'0	5''	
∆East		-0.	002	m
∆North :		Ο.	006	m
ΔHt. :	:	-0.	020	m
Fix East		2134.	236	m
CONT				
Fix North :		4231.	359	m
Fix Elev. :		580.	663	m
Calc.East :		2134.	234	m
Calc.North:		4231.	365	m
Calc.Elev.:		580.	643	m
T				QUIT
F1 F2	F3	8 F4	F5	F6

∆Ori

Orientation difference between the calculated orientation and the orientation set in the instrument.

∆East

Difference between the calculated Easting of the station and the Easting set in the intrument. (Calc. East - Fix East)

∆North

Difference between the calculated Northing of the station and the Northing set in the intrument. (Calc.North - Fix North)

ΔHt.

Difference between the calculated Elevation of the station and the Elevation set in the intrument. (Calc.Elev. - Fix Elev.)

Fix East

Easting coordinate of the station currently set in the intrument.

Fix North

Northing coordinate of the station currently set in the intrument.

Fix Elev.

Elevation of the station currently set in the intrument.

Calc. East

Easting coordinate of the station calculated with resection.

Calc.North

Northing coordinate of the station calculated with resection.

Calc.Elev.

Elevation of the station calculated with resection.

Return to the results dialog.

More Information

Display the residuals of individual measurements. You can also disable points from the calculation of position or height as well as delete erroneous measured points.

	FreSt \	Mo	re Inf	0		– 9
					9/10	
	Point	Id :			12	
	Pt. Si	tatus:			ON	
	Error	Flag:			NONE	
	ΔHz	:		0°00'	03''	
	∆Dist.	. :		0	.050	m
	RECLC	<	>	MEAS	DEL	BACK
Ċ						
	∆Ht.	:		0	.020	m
	Refl.	Ht. :		1	.555	m
	East	:		991	.427	m
1	North	:		1995	.162	m
1	Elevat	:ion :		402	.466	m
SHIFT						QUIT
•						
	F1	F2	E3	F4	E5	E6

9/10

Sequence number of the current point and total number of points in the measurement set. The scroll bar shows the sequential position of the measurements, graphically.

Point Id

The target point number.

Pt. Status

ON Measurements to target point used for calculation.

Ignore Elev.

Target point elevation disabled: measurements for elevation determination not used in calculation.

OFF Target point disabled: measurements to point NOT used for calculation.

Error Flag

Identified erroneous measurements. Possible values are:

NONE measurement is OK

HZ horizontal angle error

DIST distance error

HT height difference error The flags may also be combined, i.e. DIST + HZ

ΔHz.

Difference between calculated and measured Hz. angle

∆ Dist

Difference between calculated and measured distance

ΔHt

Difference between calculated and measured height

Refl. Ht.

Reflector height used for that target point

East, North, Elevation

Target coordinates used.

Recalculate the result.

Scroll to the measurements of the previous point.

More Information. continued

Plnt

F3 \odot

Scroll to the measurements of the following point.

Measure more point. Return to dialog "Target Point".

Delete a point from the set of measurements. You can now measure a new point in its place.

F6 \odot

Return to the results dialog without changes.

SHIFT Exit the program. Generates a plot showing the measurement configuration. The station point is in the center and the top of the sketch shows the direction of Grid north. The sketch is true in angular but not true in distances. Points are numbered sequentially in the order in which they were measured. Points not used in the calculation are marked with a dotted line.

Recalculate the solution and return to the dialog "RESULTS".

Measure more points. The F4 program will recall the "TARGET POINT" dialog.

Toggle any point ON or OFF by pressing the numeric key corresponding to the sequence number of the point.

Note, that **o** represents point 10.

Configuration

Configuration Editor

Depending on the configuration that is loaded onto your TPS1100 instrument, you may not see some or all of the options referred to below. See your Leica Geosystems dealer for more information about the configuration of your instrument.

Start the "Configuration Editor" from the "**STATION DATA**" dialog.

Frest\ Configuration Hz Ori.Acc: 0°00'32'' Ht Acc TP : 0.025 m Pos Acc TP : 0.025 m Two Faces : N0 ♥ User Disp.: N0 ♥ Log File : OFF ♥ CONT DEFLT INFO	FreSt Hz Ori.Ac Ht Acc TP Pos Acc T Fwo Faces Jser Disp .og File	Conf c: P: : :	igur	ation 0°00' 0 0	32'' .025 .025 .025 NO NO	m m ▼ ▼	MC
Hz Ori.Acc: 0°00'32'' Ht Acc TP : 0.025 m Pos Acc TP: 0.025 m Two Faces : N0 ♥ User Disp.: N0 ♥ Log File : OFF ♥ CONT DEFLT INFO	Hz Ori.Ac Ht Acc TP Pos Acc T Two Faces Jser Disp Log File	C: P: .:		0°00' 0 0	32'' .025 .025 N0 N0	m m ▼	
Ht Acc TP : 0.025 m Pos Acc TP : 0.025 m Two Faces : N0 ♥ User Disp.: N0 ♥ Log File : OFF ♥ CONT DEFLT INFO	Ht Acc TP Pos Acc T Fwo Faces Jser Disp .og File	P: : :		0 0	.025 .025 N0 N0	m m ▼	
Pos Acc TP: 0.025 m Two Faces : NO ▼ User Disp.: NO ▼ Log File : OFF ▼ CONT DEFLT INFO	Pos Acc T Two Faces Jser Disp .og File	P: : .:		0	.025 NO NO	m ▼ ▼	
Two Faces : NO ▼ User Disp.: NO ▼ Log File : OFF ▼ CONT DEFLT INFO	Two Faces Jser Disp .og File	::			NO NO	v	
User Disp.: NO V Log File : OFF V CONT DEFLT INFO	Jser Disp .og File	· : :			NO	<u>.</u>	
Log File : OFF V	og File	:			0 F F	-	
CONT DEFLT INFO					UFF	•	
	CONT				DEFLT	ΙĪ	FO
Log FlName: FREE STA.LOG	.og FlNam	e:	FRE	E STA	.LOG		
Meas Job : MYFILE.GSI ▼	leas Job	:	М	YFILE	.GSI	•	
Data Job : DEFAULT.GSI ▼)ata Job	:	DE	FAULT	.GSI	•	
						_	
QUI						QL	JIT
F1 F2 F3 F4 F5 F	F1	F2	F3	F4	F	5	F6
	۲		9	۲	۲)

The "Configuration Editor" sets parameters for further program operations:

Hz Ori Acc

Limit for the standard deviation of the orientation. The orientation is regarded as "error free", if the computed standard deviation of the orientation is within twice the entered value.

Ht Acc TP

Height accuracy of the target points. The entered value, is used as an "a priori" accuracy in the calculation. The height is regarded as "error free", if the computed standard deviation is within twice the entered value.

Posn Acc TP

Position accuracy of the target points. The entered value, is used as an "a priori" accuracy in the calculation. The position is regarded as "error free", if the computed standard deviation is within twice the entered value.

Two Faces

YES for dual-face measurement, NO for single-face.

Configuration Editor, continued

User Disp

YES The same display mask as the one used in the system measurement dialog (MEAS) is used for measurements with "Free Station".

Log File

ON, records measurements in a Log-File. The format is described on chapter Log File.

Log FIName

Enter the Log File Name

Meas. Job Selection of the measurement job for recording measurements.

Data Job

Selection of the data job containing the fix point coordinates (control data).

Store the current configuration and proceed to the dialog "STATION DATA".

Set the values to default. F5

Exit the program.

Dual-face Measurement

In the dual-face mode, the program will prompt for measurements in both faces. When both measurements are taken, the program will check the difference between the two. If the difference in angle is within 27' (0.5 gon) and the difference of two measured distances is within 0.5 m (1.64 ft), the observations will be averaged. These tolerances are used to avoid errors in target identification. If exceeded an error message will be displayed.

Log File

If "Log File" is set to ON the measurements and the results are stored in the ASCII-file specified within the "Configuration Editor". This file is created in the directory LOG on the memory card. Subsequently, you can read the memory card on your PC and obtain a hard copy of the Log-file.

3

 Data will always be appended to the specified

Log-file.

The Log-file contains the following information:

Header

The header line will contain the program used, information about the instrument, the name of the data file as well as date and time.

Record

For each measurement, a record will be stored containing :

- Station coordinates and
- orientation correction,
- standard deviations for Easting, Northing, Height of station and orientation correction.

The residuals for

- horizontal angles,
- heights and
- measured distances are also listed.

Log File, continued

Leica Geosystems	Program Fre	ee Station V 1.	00							
Instrument	: TCA11	03, Serial 1029	999							
Veas. File : MYFILE.GSI										
Program Start : 20/04/1998 at 09:42										
Using Least-Squares Solution										
Station no.	: 200 E= -3.5	461m N= -0.7	683m ELV= -0.6	6518m hi= 0.0000m						
Ori.Corr.	: 0°00'20	D"								
S.Dev. East	: 0.0003	m								
S.Dev. North	: 0.0003	m								
S.Dev. Elev.	: 0.0015	im								
S.Dev. Orient.	: 0"00'02	<u>2</u> "								
4 point(s) measured :										
## Point no.	d Hz	d Heiaht	d Distance	Error Flag						
1 109	0°01'21"	0.0012m	-0.0000m	NONE						
2 110	-0°00'00"	-0.0045m	-0.0002m	NONE						
3 112	-0°00'25"	0.0018m	0.0010m	NONE						
4 113	0°00'48"	0.0014m	-0.0002m	NONE						

Continued next page

Log File, continued

Lising Robust Solu	tion				
Using Robust Colu					
Station no.	: 200 E= -3.5461	Im N= -0.768	3m ELV= -0	.6518m l	ni= 0.0000m
Ori.Corr.	: 0°00'20"				
S.Dev. East	: 0.0003m				
S.Dev. North	: 0.0003m				
S.Dev. Elev.	: 0.0015m				
S.Dev. Orient.	: 0°00'02"				
4 point(s) measure	d :				
## Point no.	d Hz	d Height	d Distance	Error Flag	a
1 109	0°01'21"	0.0012m	-0.0000m	NONE	
2 110	-0°00'00"	-0.0045m	-0.0002m	NONE	E
3 112 ·	-0°00'25"	0.0018m	0.0010m	NONE	E
4 113	0°00'48"	0.0014m	-0.0002m	NONE	1

Typical log file entry in the "FREE STATION" program

Reference Line

Introduction

This manual describes the "Reference Line" program of the TPS1100 Professional series.

"REFERENCE LINE" is a specialized form of stakeout used for construction and building alignment. It permits positioning of a point referred to a line or an arc. Points for use in the program can be measured, entered manually, or read from the selected measurement job. The program records individual measurements in the database. In addition, the program generates a log file containing all data for a given measurement session.

For three dimensional positioning, the program calculates height differences between the target point and a reference elevation.

Depending on the configuration settings, the reference elevation for the reference line can be a constant elevation or an interpolated reference elevation. For reference arcs only constant elevations are possible.

Points with known offsets from the reference line or arc can be staked out with the function "Line and Offset".

The function is accessible from the "Define Reference Line/Arc" dialog.

Constant reference elevation

For the configuration **Ref.Elev. = 1st Base Point**, the reference elevation for the calculation of Δ Height values is the elevation of the 1st base point. The ref. elevation can be modified by specifying a height offset **(Ht.Offset)** in the "Define Reference Line" dialog. With **Edit Elev.** the height of each point can be changed separately (see Config. Dialog). For the configuration **Elev. Ref. = Baseline**, the reference elevation for the calculation of Δ Ht values is the elevation of the baseline at the reflector position.

You can modify the reference elevation by specifiying a height offset **(Ht.Offset)** in the dialog for the definition of the reference line.

ΔHt

Height difference along the vertical between the target point and the reference elevation.

∆ Perp.Dist

Height difference between the target point and the reference elevation, perpendicular to the reference elevation.

Ht Offset

Offset of the reference elevation in relation to the first base point.

ΔHt

Height difference between the target point and the reference elevation.

Ht Offset

Offset of the reference elevation in relation to baseline.

Δ Spat.Dist Line Offset along the reference elevation.

Reference Line Menu

Baseline Points

The base method is selected in the Menu dialog.

Baseline

Line defined by two points.

Radius Arc

Arc defined by two points and a radius.

3-Point Arc

Arc defined by three points.

Line of sight to the points is not necessary, since they can be imported from a data file.

Determine Base Points

This dialog defines the two points of the baseline. You can either manually enter, measure or search for the point in the database.

	Ist Jst Dat Sea Poi	FL : Po :a . urcl int:	oint Job h fo Id	Def tof t	ine E Bas I P(asel elin FILE pint	ine 01. Id+	GSI E+N 12	▼	MC
	SEA	RC	MEA	S I	NPUT			/IEW		
SHIF	r -								QU	IT
	-	F1	۲	F2	F3	•	-4	• F5		F6

The dialogs to enter the Arc points are the same and will not be described here.

Search the coordinates of the point entered in the active data job.

Proceed to determine the base base point by a measurement.

Manually enter the first base point.

Search and display the coordinates of the point found in the active data job.

Define Reference Line

The reference line can be defined by entering a distance value, a line offset value and an angle value for the base line. Heights can be changed by a constant rate (eg, 1m) by entering a Ht offset value. With Edit Elev. the height of each point can be set separately.

"Line and Angle" values cannot be set for reference arcs.

	ST Ba and Ba ineLe offset ine	Define asePt: asePt: ength:	Refer	rence L 15 1 2°03	ine (12 13 .211 .000 .558 '39"	
L H	, REEL t. Of	L&O fset:		2 03 	.500	⊢ ■■■■) m
SHIFT	F1	F2	F3	€F4	• F5	QUIT

1st BasePoint

The first base point that defines the base line.

2nd BasePoint

The second base point that defines the base line

LineLenath

Entire length of Baseline.

Offset

Establishes the displacement parallel to the base line. For Arcs the offset is radial and applied to each point separately, arcs are not "shifted".

Line

Establishes the distance from the first reference point to the starting point of the new reference line.

Alpha

Establishes the angle between the base line and the new reference line

Ht Offset

Displaces the base line parallel in height.

Accept parameters as displayed and proceed to the "REF LINE RESULTS" dialog.

If instrument is in LOCKmode with EDM-mode TRK/ RTRK. distance measurement is started.

Go to "Line & Offset" and stakeout points with known offset values from reference

Return to Menu to define a new Base Line/Arc.

Reference Line Results

The "Reference Line Results" dialog displays the data of the measured point referring to the reference line, as shown below:

	REFLIR Point Refl. ΔOffse ΔLine ΔHt ΔPerp	efere Id Ht. et Dist	ence : : : : : RE	Line	Resu 1 0 1 - 0 0 00NE	1ts 12 .530 .020 .468 .558 .039	m m m	С Ф
	∆Spat. Elevat	Dist ion	:		3 103	.020 .020	m m	
SHIFT ●	F1	€ €	2	F3	E P2 • F4	• F	Q 5	F6

Point Id

The point number of the stakeout point.

∆ Offset

Perpendicular Offset: Δ Offset+: To the right of the reference Δ Offset-: To the left of the reference

Δ Line (or Δ Arc)

Line offset from the first Ref. Point Δ Line+: in the line direction Δ Line-: in the opposite direction of the line.

ΔL from P2 (or ΔA from P2)

(only for configuration Line/ α = OFF) Line offset from the 2nd Ref. Point Δ L P2+: in the direction of the line Δ L P2-: in the opposite direction of the line (P2 -> P1).

∆ Ht

Edit Elev.= OFF: Height difference along the vertical between the target point and the reference elevation. Edit Elev. = ON: Height difference between entered and measured elev.

∆ Perp.Dist

(only for configuration Ref.Elev. = Baseline. Not available for Arc) Height difference between the target point and the reference elevation, perpendicular to the reference elevation.

∆ Spat.Dist

(only for configuration Ref.Elev. = Baseline. Not available for Arc) Line Offset along the reference elevation.

TPS1100 - Appl. Prog. Ref. Manual 2.2.0en

Results Reference Line. continued

Elevation:

Edit Elev. = OFFElevation of the measured point.

DesignElev.

Edit Elev. = ONElevation entered by user.

	F1
۲	

Simultaneously execute distance measurement and record the measurement.

Measure a distance.

Record the measurement in the measurement file.

Depending on the setting in the "Configuration" dialog a measurement block containing delta values is recorded:

WI 11	Point Number of target
WI 35	∆ Offset
WI 37	Δ Ht
WI 39	Δ Line

WI 11 Point Number of target

WI 35 Δ Offset

or

- WI 37 Δ Perpendicular
- WI 39 Δ Spatial distance

Depending on the settings in the "Configuration" dialog a log-file is also generated.

	F4
۲	
•	

Return to "Define Reference Line" dialog.

F4

Display Δ Line from P2.

Line and Offset

Enter L&O values

Line and Offset is started from the "Define Reference Line/Arc" dialog. Points with known offset values from the reference can be staked out with this function.

Point Id

Point number of the point to be staked.

Offset

Perpendicular offset of the point to be staked.

Offset +: to the right of the reference Offset - : to the left of the reference.

Line (or Arc)

Line offset from first point, along reference.

Line +: in the direction of the line.

Line - : in the opposite direction of the line.

DesignElev

Elevation of the point to be staked.

Continue to "L&O Results" dialog.

If instrument is in LOCKmode with EDM-mode TRK/ RTRK, distance measurement is started.

	F5
۲	

Return to "Define Reference Line" dialog.

L&O Results dialog

The results dialog displays the differences between entered and measured data. There are two methods to choose from: Orthogonal and Polar. *For more information refer to chapter "Method Dialog".*

ſ	RE	FL\	Lð	0	Res	ult	s			C	4	l D	1
_	Poi	nt	Id	1					14	4		Ν	J
_	Ref	1.	Ht.	:				1	.30	0	m		
_	Δ0	ffs	et	:1	►			0	.33	2	m		
_	ΔL	ine		:	V			1	.00	2	m		
_	ΔH	t		:	CUT			- 1	.01	1	m		
_	Sol	lhö	he	:				100	.00	1	m		
	AL	L	DIS	ΓΙ	RE	C	CON	T			PO	SIT	
SHIFT	1		METH	D			I<>	II			Ql	JIT	Í
	۲	F1	۲	F2	۲	F3	۲	F4	۲	F5	۲	F6	

Point Id

Point number of the point to be staked.

Refl. Ht.

Reflector height used at target.

Δ Offset

(orthogonal stakeout) Difference in transversal displacement between actual and calculated point.

- + : point is further to the right
- : point is further to the left

∆ Line

(orthogonal stakeout) Difference in longitudinal displacement between actual and calculated point along reference.

- + : point is further along the reference
- : point is closer to beginning of ref.

Δ Hz

(polar stakeout)

Difference in Hz between actual and calculated direction.

∆ Dist

(polar stakeout)

Difference in horizontal distance between actual and calculated values.

∆ Ht

Difference between design and measured elevation. Expressed both numerically and as CUT/FILL.

Elev.

Edit Elev. = OFF Elevation of the measured point. DesignElev.

Edit Elev. = ON Elevation entered by user.

• distance measurement and record the measurement.

Record the measurement in the measurement job.

Return to previous L&O dialog without recording data.

F6 (

(Re-)position the telescope on the target point. Note: this

function is only available for motorized instruments.

Open "Method" dialog to change settings.

F4

Change instrument face.

Exit the program.

Method Dialog

Open "Method" dialog from "L&O Results"

dialog.

Stake Mode Select the stakeout mode.

ORTHOGONAL TO REFLINE

Differences between entered and measured Offset values are displayed after the first distance measurement.

ORTHOGONAL TO STATION

Displays orthogonal values based on the line defined by instrument station and reflector position.

POLAR STAKEOUT

Displays differences between calculated and measured direction and horizontal distance after first distance measurement.

Auto Pos.

Select positioning method. (Motorized instruments only):

- Off Automatic positioning off.
- 2D Positioning of the horizontal drive.
- **3D** Positioning of the vertical and horizontal drive.

Symbols

Arrows can be used to guide the rod person to the point to be staked. The available symbols depend on the selected method.

• NO

Symbols are not used.

Ortho - RefLine

• YES Symbols guide the rod person along the reference.

Ortha Ctation /Dalan Ctales

Ortho - Station/Polar Stakeout

• TO STA. (↓↑)

Guidance at the rod, in relation to the instrument station.

• FROM STA. (↑↓)

Recommended to guide rod person from instrument station.

Configuration

Depending on the

configuration that is loaded onto your TPS1100 instrument, you may not see some or all of the options referred to below. See your Leica Geosystems dealer for more information about the configuration of your instrument.

Configuration Editor

Start the "Configuration Editor" from the

"Reference Line Menu" dialog.

-						
ſ	REFLN\	Confi	guratio	n (D
	Offset	:		ON	▼	Σ
	Line / a	:		0FF	▼	
	Ht. Offse	et:		0FF	V	
	Ref. Elev	/.:1s	t Base	Point	V	
	Edit Elev	/.:		NO	V	
	Rec Diff.	. :		NONE	▼	
	CONT			DEFLT	IN	F0
	User Disp).:		NO	▼	
	Log File	:		0FF	▼	
	Log FlNam	ie:	REFLIN	NE.LOG		
	Meas Job	:	FILE	D1.GSI	▼	
	Data Job	:	DEFAU	LT.GSI	▼	
HIFT					QU	IT
•	F1	F2	E3 E	-4 F	5	E6

The "Configuration Editor" lets you change and set the following parameters that determine program operation:

Offset

Set to **ON**, the program will allow the input of an offset from the reference line.

Line / a

Set to **ON**, the program will allow the input of a distance from the first base point to the starting point of the new reference line, and also an angle between the base line and the new reference line.

Ht Offset

Set to **ON**, the program will allow the input of a height offset.

Ref. Elev.

To define the reference elevation for the calculation of the height offset.

In order to change the setting for Ref. Elev., the parameter Line/ α must be turned OFF.

Ref Elev = 1st Base Point The reference elevation is the elevation of the first base point.

Configuration Editor. continued

Ref. Elev. = Baseline

The reference elevation is the elevation of the baseline at the intersection point with the vertical through current reflector position.

Edit Elev

Set to YES, point elevations can be edited directly in "Reference Line Results" and "L&O Results" dialogs. Λ Ht is the difference between entered and measured values and is updated automatically.

Rec Diff

Set to NONE, no additional measurement is recorded Set to O the program will record Δ Offset values only. Set to O/L, the program will record both Δ Offset and Δ Line values. Set to O/L/H, the program will record Δ Offset, Δ Line and Δ Height of target values.

If the option "Ref. Elev." is set to "Baseline" vou can in addition calculate the values:

Set to O/S the program will record both Δ Offset and Δ Spatial distance values.

Set to O/S/P, the program will record Δ Offset, Δ Spatial distance and Δ Perp. Dist of the perpendicular line. (Refer to figure in chapter Reference elevation)

User Disp

Set to **YES**, the display defined in the MEAS application will be used. If set to NO, the "REFERENCE LINE" default display applies.

Log File

Set to ON, the program will record measurement data in a log file in the format described on chapter Log File.

Log FIName Enter the Log File Name.

Meas. Job

Selection of the measurement job for recording measurements.

Data Job

Selection of the data job containing the fix point coordinates (control data).

Store the current F1 configuration and proceed with dialog "1st Point of Baseline".

Press to reset configuration F5 parameters to their default values.

۲

Displays date and version of the running application.

Log File

If "Log File" is set to ON the measurements and the results are stored in the ASCII-file specified within the "Configuration Editor". This file is created in the directory LOG on the memory card. Subsequently, you can read the memory card on your PC and obtain a hard copy of the Log-file.

Data will always be appended to the specified Log-file.

The Log-file contains the following information:

Header

The header line will contain the program used, information about the instrument, the name of the data file as well as dateand time.

Configuration

Each modification of baseline and reference line is stored.

Record

For each measurement, a record will be stored containing: Point No., asstaked Easting, Northing, and Elevation and their delta values.

Log File, continued

Leica Geosystem Instrument : Meas. File : Program Start :	s Program Reference Line V 1.00 TCA1103, Serial 102999 MYFILE.GSI 20/04/1998 at 09:42		
Station no. :	Stationpointnumber E=1000.000m N=2000.000m	H=400.000m hi=1.1150m	
1.BasePoint :	Baselinepointnumber E=1050.000m N=2050.000m	H=410.000m	Typical log file entries in the
2.BasePoint :	Baselinepointnumber E=1060.000m N=2060.000m	H=420.000m	REFERENCE LINE program.
Offset. :	1.0000m		
Point no. :	1025 E=1005.961m N=2048.409m	H=398.497 hr=1.115m	
Deltas :	dO= 4.3403m dL= 3.0907m dL-P2= 67.610m dH= -1.5027m		
Define Line and C Offset : Line : Elevation :	Dffset -1.000m 70.711m 401.000m		
Line&Offset Point No. : Design : Staked : Differences :	1026 E=1100.000m N=2100.000m E=1100.051m N=2099.989m dE=0.051m dN=0.011m	H=401.000 H=401.102 hr=1.115m dH=0.102	

Remote Height

Introduction

This manual describes the "Remote Height" program of the TPS1100 Professional series.

Remote Height is used to determine the elevation of inaccessible points, e.g. on cables or building facades. First, the distance to a base point situated vertically below (or above) the remote height point must be measured. Then you can aim to the remote height point.

The coordinates of the remote point are calculated from the distance measured to the base point and from the angles measured to the remote point.

To ensure correct results, the target and the reflector must be lined up vertically. In practice it is not generally possible to maintain an exactly-vertical line, and so you must decide what lateral deviation can be tolerated. The horizontal distance to the inaccessible target must however coincide with the horizontal distance to the reflector.

When the instrument is aligned and the station coordinates have been set, the position coordinates of the remote height can be calculated and stored in the measurement job.

Measure Base Point

This dialog is used in accordance with the settings of the system function "Measure & Record" or according to the dialog shown below.

Point Id

The point number of the base point.

Hz

Horizontal direction from the remote point to the base point.

۷

Vertical angle to the remote point.

Refl. Ht.

Reflector height used for the target point.

Slope Dist.

Slope distance from the instrument station to the base point.

Ht. Diff.

Height difference between the base point ground and the instrument ground.

Simultaneously measure and record in the active

measurement job. Proceed with the "REMOTE POINT" dialog.

Measure a distance. Record the

measurement in the active

measurement job and proceed with the "REMOTE POINT" dialog.

Measure the distance. Accept the

measurement without recording. Proceed with the "REMOTE POINT" dialog.

Enter the target data. (see User Manual)

Proceed with "REMOTE POINT" dialog.

Start the "Configuration Editor".

F2

F6

Change the theodolite face.

Exit the program.

Measure Remote Point

Once the base point has been measured, this dialog shows the position of the point - above or below the base point - aimed with the telescope. The data are immediately updated while turning the instrument.

REMHT\ Point Id	Meas :	Remote Pt Stati	on12	
HZ V Slope Dis	: : st:	16°55' 91°16': 23	20'' 20'' .345 i	n
∆Ht Diff. East	:	6 3453	.435 r .998 r	n n
BASE	ISTO		ARGT	n
Elevation	:	768	.005 m	n
F1	F2	F3 F4	• F5	• F6

Point Id

The point number of the remote point.

Hz

SHIF ®

Horizontal direction from the instrument to the remote point.

V

Vertical angle to the remote point.

Slope Dist.

Slope distance from the instrument station to the remote point. (calculated)

∆ Ht. Diff.

Height difference between the remote point and the base point ground.

East

Calculated Easting for the remote point.

North

Calculated Northing for the remote point.

Elevation

Calculated Elevation for the remote point.

Return to the "Measure Base Point" dialog.

Record the measurement in the measurement job.

Enter the target data. (see User Manual)

Exit the program.

Configuration

Depending on the

configuration that is loaded onto your TPS1100 instrument, you may not see some or all of the options referred to below. See your Leica Geosystems dealer for more information about the configuration of your instrument.

F2

Start the

"Configuration Editor" from the "Measure Remote point" dialog.

REMHT	C	onfi	guratio	n		5
User [isp.	:		N	0 🔻	
Hz.Pos	.Tol	:		0.20	O m	
Rec ∆H	lt	:		N	0 🔻	
Meas .	lob	:	FILE	01.GS	I V	
Data .	lob	:	DEFAU	LT.GS	IV	
CONT				DEFL	T	NFO
IFT						QUIT
	-		50			

The "Configuration Editor" sets parameters for further program operations:

User Disp

Set to YES, the display defined in the "MEAS" application will be used. If set to NO, the "REMOTE HEIGHT" default display applies.

Hz.Pos.Tol

Horizontal distance tolerance that valid point measurements cannot exceed.

Rec AHt

NO The Height difference **∆Ht.diff** between remote and base point is not recorded.

Rec in WI37

AHt.diff is stored as record WI37 in the measurement job.

Meas Job

Selection of the measurement job for recording measurements.

Data Job

Selection of the data job containing the fix point coordinates (control data).

Accept the current configuration and proceed to the dialog "MEASURE BASE PT".

Reset configuration parameters to their default

values.

Displays date and version of the running application.

Hidden Point

Introduction

This manual describes the "Hidden Point" program of the TPS1100 Professional series.

The program allows measurements to a point that is not directly visible, using a special hidden-point rod. The data for the hidden point are calculated from measurements to the prisms mounted on the rod with a known spacing and a known length of rod. The rod may be held at any angle, as long as it is stationary for all measurements.

"Measurements" are calculated as if the hidden point was observed directly. These "calculated measurements" can also be recorded.

The hidden-point rod can have either two or three reflectors. The rod you are using is defined in the "Configuration" of the program. Here, you enter the length of the rod, spacing between reflectors, and the prism constant. *Refer to the following picture, which illustrates a hiddenpoint rod with three reflectors.*

If the hidden-point rod you are using has three reflectors, the program calculates coordinates for the hidden point from three measurement combinations:

> Reflector 1 + Reflector 2 Reflector 3 + Reflector 2 Reflector 1 + Reflector 3

The X, Y and Z coordinate values resulting from each of these measurement combinations are meaned to produce the XYZ coordinates of the hidden point.

In the case of motorized theodolites, you can configure the program so that it points the telescope at the third reflector automatically, after the first two reflectors have been measured.

Measure Rod

5

The program will display the TPS 1100 "Measure & Record" dialog or the dialog shown below. If the difference of the given and measured spacing between the prisms exceeds the "Meas. Tol. limit" a message is displayed.

You may accept the measurement or re-measure the prism.

	HDNPT Point Hz V Slope Ht. D	Mea Id Dis iff.	sure : : t: :	Ref 1 9	lect Sta 6°59 1°10	or tio 5'5 6'2	1 0n1 00' 20'	2 , - I	n	MC]
	ALL	DIS	R	C	CONT	T	ARC	ìΤ			J
HIFT		CON	-		I<>I	I			QU	IT	
	• F1	۲	F2	F3	F	-4	۲	F5	۲	F6	

Simultaneously measure and F1 record in the active file. Proceed with the same dialog for the next prism. If the last point has already been measured, the program will proceed to the "RESULT" dialog.

F3

Measure a distance. Record the

measurement in the active file and proceed with the same dialog for the next prism. If the last prism has already been measured, the program will proceed to the "RESULT" dialog.

 \odot

Measure the distance. Accept the

measurement without recording. Proceed with the same dialog for the next prism. If the last prism has already been measured, the program will proceed to the "RESULT" dialog.

Enter the target data. (see F5 User Manual)

Note: When using the Hidden Point program, vou must NOT change the target properties with the TARGT function, except to set the ppm for the measurements. The prisms on the hidden point rod MUST be defined in the CONFIGURATION of Hidden Point.

SHIFT	F4	Change the theodolite
		face.

SHIFT	F6
۲	

Press this key combination to quit the

Hidden Point program at any time.

Result

Once all reflectors have been measured, the program will display the results of the hidden-point calculation.

Using 3 reflectors the mean values of the "HIDDEN POINT" are displayed.

HDNPT	Results		0
Point Id	: St	ation12	E
Hz	: 16°	55'50''	
v	: 91°	16'20''	
Slope Dis	t:	3.345 m	
Ht. Diff.	:	-0.435 m	
East	: 2	253.635 m	
NEW	REC TAF	RGT	
North Elevation	: 12 :	145.281 m 306.005 m	

Point Id

The Point number.

Hz

Horizontal direction to the hidden point.

V

Vertical angle to the hidden point.

Slope Dist.

Slope distance to the hidden point.

Ht. Diff

Height difference from instrument station to the hidden point.

East

Calculated Easting (E) for the hidden point.

North

Calculated Northing (N) for the hidden point.

Elevation

Calculated Elevation for the hidden point.

Take a new hidden-point measurement.

Store the point calculation on the recording device.

Enter target data. (see User Manual)

Configuration

SHIFT Start the

from the "MEASURE" dialog.

	HDNPT User Meas. Refle	Disp. Tol. ctor	onf : : :Lo	igur eica	ation O refl	N0 .020 .tape	▼ m • ▼	MC
	No.of Rod L CONT	Refl.ength			5	3 .000 Defi	▼ m IN	IFO
	Dist Dist Meas Data	R1 - R2 R1 - R3 Job Job	:	F	1 0 ILE01 ILE02	.000 .500 .GSI .GSI	m m ▼	
SHIFT]	1 F	2	F3	F4	F	Q1	JIT F6

User Display

- YES user defined display
- NO the default display of the program "HIDDEN POINT".

Meas. Tol

Limit for the difference between the given and measured spacing of the reflectors. If the tolerance value is exceeded, the program will issue a warning.

In case of measurements with 3 prism the values is used as limit for the max. deviation of the 3 measurements.

Add. const.

Input of prism constant for the prisms of the rod. The prism constant set in the system is disregarded.

No. of Refl.

Number of the prisms on the rod you are using. Move the input cursor to this line, then toggle to either 2 or 3.

Auto pos.

When ON, the program will automatically point the telescope of a motorized theodolite at the third prism once the first two prisms have been measured. The exact pointing must be made manually.

Rod Length

Total length of hidden-point rod.

Dist. R1-R2

Spacing between the centers of reflector R1 and prism R2.

Dist. R1-R3

Spacing between the centers of prism R1 and prism R3. Enter only for rods with three prisms. Prism 3 must be situated between prism 1 and 2.

Refer to Figure on page 79, which illustrates a hidden point rod with three reflectors.

Configuration, continued

Example of Measurement data

Logfile

Accept the current configuration and proceed to "MEASURE ROD" Note that all parameters for the rod you are using must be defined before you can proceed. If any of the parameters have not been defined, the program will issue an error message to this effect. Press OK to clear the message, then make any necessary settings in the "CONFIGURATION".

Set values to default. Default values are displayed.

Displays date and version of the running application.

Measurements to Point Ids 2 and 3 (the first two records) are the raw measurements. The measurement to Point Id 4 is the hidden point measurement - the measurement that could have been made if Point Id 4 was not behind an obstruction between it and the instrument station (with a Refl. Ht = 0.)

In this GSI8 example, the Recording Mask is the standard polar mask (Point Id, Horizontal Circle, Vertical Circle, Slope Distance and ppm / Offset. The actual data recorded will be determined by the Recording Mask in effect at the time the measurement and/or hidden point data are recorded. Hidden Point does not generate a logfile.

110041+00000002 21.322+07018850 22.322+06455150 31..00+00003078 51..1.+0000+034 110042+00000003 21.322+10896450 22.322+06213050 31..00+00002910

Example: GSI8 Measurement data

Application notes

To Test / Prove the Hidden Point program

Setup and orient the instrument in an open area. Check the configuration to be sure the hidden point rod and prisms are properly defined. Position the tip of the hidden point rod on a mark that is directly visible from the instrument location.

Start the hidden point program and, making sure the hidden point rod does not move between measurements, measure the prisms on the hidden point rod.

Store the coordinates of the "hidden point" on the Memory Card. Start the Setting Out program, make sure the configuration allows for 3D positioning, then select the previously stored "hidden point" for setting out. Motorized instruments will drive directly to the point, which will then be behind the crosshairs of the telescope. Manually turn non-motorized instruments until the Δ Hz and Δ V both equal zero. The "hidden point" will be behind the crosshairs of the telescope.

Uses for the Hidden Point program

The hidden point program may be used to obtain accurate three dimensional coordinates for a point that is currently blocked from direct measurement by an obstruction between the point and the instrument.

Typical uses are:

 Determination of flow line locations and elevations in manholes, without measuring from the rim of the manhole to the flow line and estimating corrections for nonverticality of the measuring tape and eccentricity from the measurement on the rim to the horizontal location of the flow line;

- Determination of recesses in building corners for detailed surveys, without estimating right angle offsets, with or without taping of the dimensions;
- Measurements behind overhangs, buttresses and columns for quantity determinations in underground construction or mining, without estimating right angle offsets, with or without taping of the dimensions;
- Measurements of industrial process piping or other equipment in close quarters;
- Detailed architectural surveys for remodeling or cultural preservation or restoration work;
- Any place where accurate measurements would require many more instrument setups in order to achieve line of sight from the instrument to the points being measured.

Area

Introduction

This manual describes the "Area" program of the TPS1100 Professional series.

An area can be defined by a series of straight lines and arcs. Arcs are defined by 3 radial points or 2 radial points and radius.

Measure Mode

F1

Straight line

ſ	AREA	M	easure	Point			Ð
	Segs M	eas.	:		0		Σ
	Point	Id	:		2		
	Refl.	Ht.	:		0.000	m	
	Hz		:	95°55	'50''		
	V		:	91°16	'20''		
	Slope	Dist	:			m	
	ALL	DIST	REC	CONT	TARGT	IMF	OR
	Height	Dif	:			m	
	East		:			m	
	North		:			m	
	Elevat	ion	:	206	.7963	m	
	Azimut	h	: 1	82°25	'05''		
	Seg.Le	ngth	:		0.203	m	
SHIFT		CONF	DEL	CALC	ARC	QU	IT
			-				

F2 F3 F4 F5 F6

Segs Meas.

Counts the number of segments. With a new area the segment counter will be set to zero.

Seg. Len.

Length of the last straight line segment measured.

Simultaneously measure and F1 record data in the active measurement job.

Measure a distance and record data in the

active measurement job.

Measure a distance without recording.

TPS1100 - Appl. Prog. Ref. Manual 2.2.0en

Measure Mode, continued

Arcs

● F5

Enter the target data. (see User Manual)

SHIFT

Import target coordinates.

F2 Start the "Configuration editor".

F3 Deletes last completed segment. Resume at

the start of a new segment.

Close the area polygon to the start point and

calculates area and length of perimeter. The display of the results is shown in *chapter "Calculation"*.

Select arc as the next segment.

SHIFT	

Quit the Area program.

During measurement, you can choose the ARC function to measure an arc defined by 3 radial points or 2 points and radius.

Select the wished ARC function after having measured the first point of arc.

Ensure the central angle of any arc is always smaller than 180° (200 gon).

Three Points

Determine the second and third points of an arc sequentially. Completing the third point the program continues with Dialog "Measure point".

AREA **3 Point ARC** MC second point: 3 point ARC, Point Id Refl. Ht. : 0.000 m 95°55'50'' Ηz v 91°16'20'' Slope Dist: ALL DIST REC CONT TARGE IMPOR Elev.Diff.: East

SHIF		1					RA	D	QU	IT
	_ F	1	F2	F3	۲	F4		F5		F6

Simultaneously measure and record data in the active measurement job.

North

5

Elevation :

Measure a distance and record data in the

active measurement job.

Arcs. continued

AREA	Rad	ius /	ARC			5
Radius	ARC,	end	point	:		Σ
Point 3	Id :			1		
Refl.	Ht. :			0.000	m	
Hz	:		95°55	'50''		
v	:		91°16	'20''		
Slope	Dist:				m	
ALL [DIST	REC	CONT	TARGT	IM	POR
Elev.D:	iff.:				m	
Elev.D: East	iff.:				m m	
Elev.D: East North	iff.: :				m m m	

Enter the target data. (see User Manual)

Import target coordinates.

F5

Press 3 Pt. to switch to the 3-Point Arc method.

Exit the program.

For arcs to the left enter the radius positive and for arcs to the right enter the radius negative.

Radius Arc

Determine the two points of an arc sequentially. After the end point the "Measure point" dialog prompts to input the radius.

F3

F1

 \odot

Measure a distance and record data of the

F2 F3 F4 F5 F6

Simultaneously measure and

record data of the end point of arc in the active measurement job.

end point of arc in the active measurement job.

Measure a distance without recording.

Arcs, continued

Calculation

Displays number of segments, computed area and length of perimeter.

	ARE No. Are Hec Per	A\ Se a tar ime	egs es etei	Re:	sul	ts	1	892 0 295	1 . 88 . 08 . 56	0 8 m 9 3 1	2 m	MC
SHIFT	CON	T	NE	N F2	STO	RE		EA	PLO	T		E6
	۲	F1	۲	F2	۲	F3	۲	F4	۲	F5	۲	F6

No. Segs. Number of segments used.

Area

Computed area in units of measure.

Hectares/Acres

Computed area in hectares or acres¹. 1 acre = 43560 ft².

Perimeter

Length of perimeter of the current unit of measure.

¹ depending on the setting of the distance unit metre or feet.

Continue with dialog "MEASURE POINT".

Start a new area. Resets the segment counter to zero. Results of the last area computation will be erased.

Radius

Enter the radius.

Calculation, continued

• F3 The following format will be used to record calculated

area results:

- WI 41: Code block identification (default = 36)
- WI 42: Number of segments used.
- WI 43: Area in the current measurement units, always with one decimal place.
- WI 44: Length of perimeter in the current units of measure with one decimal place.

Code no. of (default = 36) segments =4		area polygon 4500.3 m²	length polygon perimeter
WI 41	WI 42	WI 43	WI 44

Generate a plot of the area.

SHIFT

Exit the program.

Plat

Shows a plot of the present area.

Return to the dialog "RESULTS".

TPS1100 - Appl. Prog. Ref. Manual 2.2.0en

Configuration

Depending on the

configuration that is loaded onto your TPS1100 instrument, you may not see some or all of the options referred to below. See your Leica Geosystems dealer for more information about the configuration of your instrument.

Configuration Editor

Start the Configuration Editor from the

"Measure Point" dialog.

AREA	Configuration		ย
Two Face	es :	NO	\geq
Code	:	36	
Log File		OFF	
Log FlNa	ame: ARE	A.LOG	
Meas Job	D: MEA	S.GSI	
Data Job	DAT	A.GSI	
CONT		DEFLT	0
		QUI	Т
• F1 •	F2 F3 F4	4 F5	F6

The "Configuration Editor" sets parameters for further program operations:

Two Faces

YES for dual-face measurement,

NO for single-face.

Code

Enter the block identification code for recording the area results (max. eight alpha numeric characters)

Log File

Set to **ON**, the program will record measurement data in a log file in the format *described on the last page of this chapter.*

Log FIName

Enter the Log File Name.

Meas. Job

Selection of the measurement job for recording measurements.

Data Job

Selection of the data job containing the fix point coordinates (control data).

Configuration Editor, continued

Dual-face Measurement

Store the current

configuration and proceed to the dialog "Measure Point". Points can be added to the current area or a new area can be started.

Set the values to default.

Display date and version of the running application

Exit the program.

In the dual-face mode, the program will prompt for measurements in both faces. When both measurements are taken, the program will check the difference between the two. If the difference in angle is within **27' (0.5 gon)** and the difference of two measured distances is within **0.5 m (1.64 ft)**, the observations will be averaged. These tolerances are used to avoid errors in target identification. If exceeded an error message will be displayed.

Log File

If "Log File" is set to ON the measurements and the results are stored in the ASCII-file specified within the "Configuration Editor". This file is created in the directory LOG on the memory card. Subsequently, you can read the memory card on your PC and obtain a hard copy of the Log-file.

Data will always be appended to the specified Log-file.

The Log-file contains the following information:

Header

The header line will contain the program used, information about the instrument, the name of the data file as well as date and time.

Log File, continued

Record

For each section of the area, start point and end point, horizontal distance and azimuth are stored.

For arcs with 2 points and radius the azimuth of arc, radius and length of arc are also stored.

For 3 point arcs the direction of arc, radius and length of arc are also stored.

Leica Geosystems Progr Instrument Meas. file Program Start	ar : :	n Area V 1.00 TCM1103, Serial 102999 MYFILE.GSI 20/04/1998 at 09:42
Segment Number Start Point End Point H Distance Azimuth	· · · ·	1 1 2 5.5555m 140°11'17"
Segment Number Start Point End Point Curve Right/Radius ARC Length	:::::::::::::::::::::::::::::::::::::::	2 2 4 4.9089m 2.326m
Segment Number Start Point Second Point End Point Curve Right/Radius ARC Length	· · · · · · · · · · · · · · · · · · ·	3 4 5 6 5.362m 2.254m
Number of Segments Area Hectares Perimeter	::	3 9.8496m2 0.0010 13.8396m

Typical log file entry in the "AREA" program

Sets of Angles

Introduction

This manual describes the "Sets of Angles" program for the TPS1100 Professional series instruments.

Sets of Angles is used to measure directions to targets for which coordinates are not necessarily known. Distance measurements are optional.

It provides field checking and analysis of measurements, while the instrument remains setup on the station.

The adequacy / accuracy of measurement data may be verified before leaving the observing station. With motorized instruments, rough pointing to each station is automatic, the operator need only refine the pointing before measuring. This eliminates observations to incorrect targets.

With Automatic Target Recognition, fine pointing and measurement can be automatic when the target is a reflector. The operator makes only the first observation to each station, then the rest of the measurements can be fully automated. A minimum of two full sets must be observed, and all target points must be observed in Face I and Face II. Sets of Angles has a "Learning Phase" during which it "learns" the positions and target Point Ids of the points you wish to measure.

"Learning" occurs automatically as you observe each target point in Face I. This information is then used to prompt you through the completion of your measurements at the station.

A maximum of 64 measurements per instrument station (in both faces) can be handled in one calculation. For instance, you may measure 16 sets to 4 target points, 8 sets to 8 target points, etc.

Sets Menu

Sets menu

The target Point Ids and the sequence of measurement to the target points are stored in the program during the observation of the first half of the first set (in Face I.) This is the "Learning Phase." To complete the first set, and during the observation of the additional sets, you will be offered the target points in the sequence defined during the learning phase. If you are using a non-motorized instrument, the horizontal and vertical differences will be displayed, to guide you to the correct target point. Motorized instruments will automatically drive to the target point. TCA- and TCRAinstruments may make all measurements automatically, after the learning phase.

SHIFT F2 Start the "CONFIGURATION" Option, if available.

Measure Mode

• Measure First Set

This is the learning phase of the Sets of Angles program. Your inputs and measurements will be stored by the program to guide you through the balance of the measurement process.

You must measure to all desired target points in this set during the learning phase, and you may not add target points to the set after you leave the learning phase.

SETS\ First Set	
Set No. :	1 🛯 🖻
Seq. No. :	1
Face :	I
Point Id :	501
Refl. Ht. :	1.300 m
Auto Meas.:	YES
MEAS LIST <	-> DONE

Prism Type:Leica 360°prism ▼ PrismConst: 0.0mm

Set No.

Displays the number of the set currently being measured. Always "1" in the learning phase.

Seq. No.

Displays the sequential number of the point currently being measured.

Face

Displays the required instrument face for this measurement.

Point Id

Input the Point Id of the point currently being measured.

Refl. Ht.

(Optional, but necessary for the program to correctly calculate the elevation of the target point.) Input the Reflector Height of the point currently being measured.

Auto Meas.

Automatic Measurement option, available only with motorized instruments. Select ON or OFF as desired.

- If OFF, motorized instruments must be manually pointed to this target point in further sets.
- If **ON**. motorized instruments will automatically turn toward this target point in further sets.

If ON and the target is a prism,

motorized instruments with ATR will automatically turn toward, fine point and measure to this target point.

Prism Type

(Optional, but necessary for the instrument to correctly measure the distance to the target point.) Select the type of prism at this target point.

PrismConst

Display only of the offset of the current Prism Type. Will be updated if the Prism Type is changed.

Press after all settings are correct and go to the Measurement Dialog.

(Optional) Press to create a F2 list of up to ten target points. Subsequent measurements may then be made by selecting the target point from this list.

Measure Mode. continued

(Not available until a list of F3 \odot target points has been

defined.) Press to select the previous point on the list.

(Not available until a list of target points has been defined.) Press to select the next point on the list.

Press when all target points have been measured in Face

I. You will see a warning that you are leaving the Learning Phase.

- Press YES to continue. The program returns to the Sets Menu with the focus on 2 Measure Further Sets.
- Press NO if you pressed DONE in error. The program returns to this dialog.

Press to Quit Sets of F6 Angles. This option is available on nearly every dialog within Sets of Angles.

Press to view Point list.

Point 1 - 10

Input up to ten Point Ids to enable selection from this list on the preceding dialog. You are not required to measure to every target point on this list.

Press after all target Point Ids have been input.

Manually point the instrument at the target point. If the target is a prism and you are using a TCA- or TCRAinstrument with ATR turned on, you need point only "close" to the target. When you are "on target" select one of the measurement options:

SETS	6\ F	irst Se	t		🗖 ย		
Poir	nt Id	:		501			
Ref	1. Ht.	:	1.	300 m			
Hz		: 24	49°10'2	0''			
v		: 9	90°19'5	2''			
ΔHz		:					
ΔV		:					
ALL	DIST	REC	CONT T	ARGT	—		
Slop	be Dist	:		m			
ASIC	opeDist			m			
SHIFT			I<>II		UIT		
	F1 F	2 F3	• F4	• F5	• F6		

Point Id

Displays the Point Id of the point currently being measured, as input on the previous dialog.

Refl. Ht.

Displays the Reflector Height of the point currently being measured, as input on the previous dialog.

Hz

Displays the current value of the Horizontal Circle.

V

Displays the current value of the Vertical Circle.

ΔHz

Displays the difference between the current value of the Horizontal Circle and the first direction to the target point. Displays as dashes during the learning phase.

ΔV

Displays the difference between the current value of the Vertical Circle and the first direction to the target point. Displays as dashes during the learning phase.

Slope Dist

Displays the distance to the target point. Displays as dashes until a distance is measured manually.

∆ SlopeDist

Displays the difference between the current distance to the target point and the first distance to the target point. Displays as dashes during the learning phase.

Measure the distance to the **F**1 target point, record the measurement results in the Meas Job and return to the previous dialog. Data will also be stored internally by Sets of Angles.

Measure the distance to the target point and remain at this dialog.

Record the measurement results in the Meas Job and

return to the previous dialog. Data will also be stored internally by Sets of Angles.

Store the measurement F4 results internally and return to the previous dialog. Data will not be stored in the Meas Job

(May not be available) Check E5 and/or set the reflector type, reflector height, ppms.

Measure Set

At the conclusion of the learning phase, select Measure Further Set. You will be prompted to make the measurements, in the sequence you selected in Configuration, to complete the first Set of measurements.

- Non-motorized instruments will display the Telescope Positioning dialog to help you find the target points in sequence.
- Motorized instruments will automatically turn to the target points in sequence. You must refine the pointing manually. After completing the first set, the program returns to the Sets Menu.
- With TCA- or TCRA-instruments and Auto. Meas. = **ON**, the first set will be completed automatically and the program returns to the Sets Menu.

You will use this dialog to measure all additional sets at this instrument station.

Point Id

Displays the Point Id of the point currently being measured.

Refl. Ht.

Displays the Reflector Height of the point currently being measured.

Set no.

Displays the number of the set currently being measured.

Seq. no.

Displays the sequential number of the point currently being measured.

Face

Displays the required instrument face for this measurement.

Measure Mode, continued

Press to measure to the \bigcirc displayed target point in the displayed face.

Press to measure to the F3 ۲ previous target point in the displayed face. You may measure points out of sequence, but this may have undesirable effects in your postprocessing software.

Press to measure to the next F4 target point in the displayed face. You may measure points out of sequence, but this may have undesirable effects in your postprocessing software.

Press when all target points have been measured in Face Il or to abort measurement.

Measure Further Set

After finishing the first set, select Measure Further Set again. You must repeat the above procedure to measure at least one more set. You may measure more than one additional set, up to the maximum number of pointings supported by Sets of Angles (64 Face I / Face II pointings to targets.)

If you have a motorized instrument, you will be able to specify the number of additional sets, and the instrument will turn to each target point in sequence until all the additional sets have been measured. TCA- and TCRA-instruments will automatically measure to all target points that have the Auto. Meas. parameter set to ON.

If you have a non-motorized instrument, you will select Measure Further Set after each set is completed, until all additional sets have been measured.

The Telescope Positioning dialog will help you find the target points in sequence.

\int	SETS		Mea	sure	Set				2
	Set	No.	:				1		Σ
	Seq.	No.	:				1		
	Face		:				I		
	Point	t Id	:				501		
	Refl.	Ht.	. :			1	.300	m	
	Auto	Meas	5.:				0FF		
	MEAS			<		>	DONE		
SHIFT								QU	IT
۲	۰F	1	F2	• F3	8	F4	● F	5	F6

Set no.

Displays the number of the set currently being measured.

Seq. no.

Displays the sequential number of the point currently being measured.

Point Id

Input the Point Id of the point currently being measured.

Refl. Ht.

(Optional, but necessary for the program to correctly calculate the elevation of the target point.) Input the Reflector Height of the point currently being measured.

Auto Meas.

Automatic Measurement option, available only with motorized instruments. Select ON or OFF as desired.

If **OFF**, motorized instruments must be manually pointed to this target point in further sets.

If **ON**, motorized instruments will automatically turn toward this target point in further sets.

If **ON** and the target is a prism, motorized instruments with ATR will automatically turn toward, fine point and measure to this target point.

Prism Type

(Optional, but necessary for the instrument to correctly measure the distance to the target point.) Select the type of prism at this target point.

PrismConst

Display only of the offset of the current Prism Type. Will be updated if the Prism Type is changed.

 \odot

Press after all settings are correct and go to the Measurement Dialog.

(Optional) Press to create a F2 ۲ list of up to ten target points. Subsequent measurements may then be made by selecting the target point from this list.

(Not available until a list of F4 target points has been defined.) Press to select the next point on the list.

Press when all target points F5 have been measured in Face Il or to abort measurement.

Telescope Positioning (non motorized instruments only)

To help you locate the target points easily when you are using a nonmotorized instrument, and to reduce the possibilities for errors in target point identification, Sets of Angles displays the differences between the current orientation of the telescope and the "learned" direction to the target point specified on the previous dialog.

	TELESCOPE POSITIONING Hz- and V-positioning: Set direction(s) to zero. AHz : -3°56'23'' Y												
	ΔV			:			1°2 0K	22':	25'	, 	ABO	RT	
SHIFT	۲	F1	۲	F2	۲	F3	۲	F4	۲	F5	QUI	F6	

ΛHz

Displays the difference between the current value of the Horizontal Circle and the first direction to the target point. Manually turn the instrument until the value is zero, then the instrument will be oriented toward the target point.

ΔV

Displays the difference between the current value of the Vertical Circle and the first direction to the target point. Manually turn the instrument until the value is zero, then the instrument will be oriented toward the target point.

Press when you are ready to F4 measure to the target point. You will see the Measure Further sets measure dialog. This is not displayed until the telescope is within 0°27' (0.5 gon) of the target point.

Press to abort and return to the previous dialog.

Calculate Mode

Calculate Horizontal and Vertical Sets

The general display format is the same for horizontal directions. vertical directions and slope distances. The data displayed refer to the calculation function selected from the Sets Menu.

Standard deviations of a single direction in both faces (σ Singl.Dir) and the standard deviation for an averaged direction from all sets $(\sigma Avg. Dir)$ are calculated.

Computations of standard deviations require that all targets and sets are observed in two faces. Exceptions may exist, in which case the standard deviation should be seen as an approximation to be used as a field control. The correct standard deviations a posteriori in this case can be calculated using the recorded data and a suitable computation method.

Pts. Active

Number of observed points used in the calculation.

Sets Active

Number of observed sets used in the calculation.

σSingl.Dir

Standard deviation of one observed horizontal or vertical direction, ok slope distance

σAvg. Dir

Standard deviation of an average direction ok slope distance from all sets.

F3 ۲

Results of sets of angles are recorded in the Meas Job. (For details see dialog "FORMATS AND MORE INFORMATION")

Show the results of individual F5 measurements on the screen. (For details see dialog "More Information").

Returns to Set Menu.

Exit the program.

• Example of Measure Job Data

The following data are the result of running Sets of Angles to measure three sets to three target points (Point Ids 2, 3 and 5.) The horizontal, vertical and distance results were stored in the Meas. Job as well. The instrument was set to store data in GSI8 format using the long-time Leica Geosystems "standard" raw measurement data.

Record numbers 1 through 18 (110001 - 110018) are the raw measurement data. Records 19 through 39 (410019 - 410039) are the results data. The results data are explained below. 110001+00000002 21.322+20650070 22.322+06456000 31.08+00307660 51.1.+0000+000 110002+00000003 21.322+24530390 22.322+06215080 31..08+00290900 51..1.+0000+000 110003+00000005 21.322+29713310 22.322+07412400 31.08+00459730 51.1.+0000+000 110004+00000005 21.322+09713570 22.322+32587690 31..08+00459610 51..1.+0000+000 110005+00000003 21.322+04530500 22.322+33784700 31..08+00290800 51..1.+0000+000 110006+00000002 21.322+00650090 22.322+33543850 31..08+00307620 51..1.+0000+000 110007+00000002 21.322+20649620 22.322+06456000 31..08+00307670 51..1.+0000+000 110008+00000003 21.322+24529920 22.322+06215230 31..08+00290890 51..1.+0000+000 110009+0000005 21.322+29712870 22.322+07412590 31.08+00459740 51..1.+0000+000 110010 ± 0000005 21.322+09713140 22.322+32587570 31.08+00459600 51.1.+0000+000 110011+00000003 21.322+04529930 22.322+33784680 31..08+00290830 51..1.+0000+000 110012+00000002 21.322+00649620 22.322+33543880 31..08+00307620 51..1.+0000+000 110013+00000002 21.322+20649680 22.322+06456170 31..08+00307660 51..1.+0000+000 110014+00000003 21.322+24529940 22.322+06215210 31..08+00290900 51..1.+0000+000 21.322+29712900 22.322+07412560 31.08+00459740 51.1.+0000+000 110015+0000005110016+00000005 21.322+09713160 22.322+32587480 31..08+00459620 51..1.+0000+000 110017+00000003 21.322+04530200 22.322+33784770 31..08+00290800 51..1.+0000+000 110018+00000002 21.322+00649690 22.322+33543840 31..08+00307620 51..1.+0000+000 410019+HZ-RESLT 42....+00000003 43....+00000003 44....+00000038 45....+00000022 410020+HZ-MEANO 42....+00000002 43....+00000000 410021+HZ-MEAN0 42....+00000003 43....+03880358 410022+HZ-MEAN0 42....+00000005 43....+09063360 410023+HZ-DIFF0 42....+00000002 43....+10000000 44....+20000000 45....+30000000 410024+HZ-DIFF0 42....+00000003 43....-10000034 44....+20000063 45....-30000029 410025+HZ-DIFF0 42....+00000005 43....+10000003 44....-20000020 45....+30000016 410026+V0-RESLT 42....+00000003 43....+00000003 44....+00000057 45....+00000033 410027+V0-MEAN0 42....+00000002 43....+06456103 410028+V0-MEAN0 42....+00000003 43....+06215224 410029+V0-MEAN0 42....+00000005 43....+07412466 410030+V0-DIFF0 42....+00000002 43....+10000022 44....+20000042 45....-30000064 410031+V0-DIFF0 42....+00000003 43....+10000029 44....-20000041 45....+30000011 410032+V0-DIFF0 42....+00000005 43....+10000102 44....-20000026 45....-30000076 410033+D0-RESLT 42....+00000003 43....+00000003 44....+00000004 45....+00000002 410034+D0-MEAN0 42....+00000002 43....+00307642 410035+D0-MEAN0 42....+00000003 43....+00290853 410036+D0-MEAN0 42....+00000005 43....+00459673 410037+D0-DIFF0 42....+00000002 43....+10000002 44....-20000003 45....+30000002 410038+D0-DIFF0 42....+00000003 43....+10000003 44....-20000007 45....+30000003 410039+D0-DIFF0 42....+00000005 43....+10000003 44....+20000003 45....-30000007

Calculate Mode, continued

	Horizontal	Number of targe	et	Number of sets	mR (standard deviation of	mM (standard deviation
		results				
	D0-RESLT =	Slope				
		results		direction, or slope dista	ance	
	V0-RESLT =	results Vertical W	/I 45	Standard deviation of t	tion	
WI	41 HZ-RESLT =	Horizontal direction		single horizontal or ver direction, or a slope dis	tical stance	
		W	/I 44	Standard deviation of a	a	
Hc	rizontal direction r	esults:				
Th rea	The following formats are used to record results in the Meas Job.		/I 43	Number of sets active computation	in the	
•	Formats and Data F	Recording W	/I 42	Number of target point observed	S	

Horizontal Results	Number of target points =3	Number of sets =3	mR (standard deviation of a single direction) =3.8 cc	mM (standard deviation of the mean direction) =2.2 cc	
410019+HZ-RESLT	42+00000003	43+00000003	44+00000038	45+00000022	
WI 41	WI 42	WI 43	WI 44	WI 45	
Calculate Mode, continued

- WI 41 HZ-MEAN0 = Mean horizontal direction V0-MEAN0 = Mean vertical direction D0-MEAN0 = Mean slope distance
- WI 42 Target Point Id
- WI 43 Mean value

Horizontal Mean	Target Point Id	Mean Horizontal Direction (First target point always =0)
410020+HZ-MEAN0	42+00000002	43+00000000
410021+HZ-MEAN0	42+00000003	43+03880358
410022+HZ-MEAN0	42+00000005	43+09063360
WI 41	WI 42	WI 43

Calculate Mode, continued

WI 41 HZ-DIFF0 = Horizontal direction residual, per set V0-DIFF0 = Vertical direction residual, per set D0-DIFF0 = Slope distance residual, per set

- WI 42 Target Point Id
- WI 43 48 Residuals, per set

Residual (Mean Direction) per Set	Target Point Id	Set number and residual (Point Id 3, Set 1 = - 3.4 cc)	Set number and residual (Point ld 3, Set 2 = +6.3 cc)	Set number and residual (Point Id 3, Set 3 =- 2.9 cc)
410020+HZ-DIFF0	42+00000002	43+10000000	44+20000000	45+30000000
410020+HZ-DIFF0	42+00000003	4310000034	44+20000063	4530000029
410020+HZ-DIFF0	42+00000005	43+10000003	4420000020	45+30000016
WI 41	WI 42	WI 43	WI 44	WI 45

Vertical direction results:

Vertical Results	Number of target points	Number of sets	mR (standard deviation of a single direction)	mM (standard deviation of the mean direction)
	=3	=3	= 5.7 cc	= 3.3 cc
410019+V0-RESLT	42+00000003	43+00000003	44+00000057	45+00000033
WI 41	WI 42	WI 43	WI 44	WI 45

Vertical Mean	Target Point Id	Mean Vertical Direction
410020+V0-MEAN0	42+00000002	43+06456103
410020+V0-MEAN0	42+00000003	43+06215224
410020+V0-MEAN0	42+00000005	43+07412466
WI 41	WI 42	WI 43

Residual (Mean Direction) per Set	Target Point Id	Set number and residual (Point Id 3, Set 1= + 2.9 cc)	Set number and residual (Point Id 3, Set 2= - 4.1 cc)	Set number and residual (Point Id 3, Set 3= +1.1 cc)
410020+V0-DIFF0	42+00000002	43+10000022	44+20000042	4530000064
410020+V0-DIFF0	42+00000003	43+10000029	44 20000041	45+30000011
410020+V0-DIFF0	42+00000005	43+10000102	44 20000026	4530000076
WI 41	WI 42	WI 43	WI 44	WI 45

TPS1100 - Appl. Prog. Ref. Manual 2.2.0en

Slope distance results

Distance Results	Number of target points	Number of sets	mR (standard deviation of a single direction)	mM (standard deviation of the mean direction)
	=3	=3	= 0.4 mm	= 0.2 mm
410019+D0-RESLT	42+00000003	43+00000003	44+00000004	45+00000002
WI 41	WI 42	WI 43	WI 44	WI 45

Distance Mean	Target Point Id	Mean Distance
410020+D0-MEAN0	42+00000002	43+00307642
410020+D0-MEAN0	42+00000003	43+00290853
410020+D0-MEAN0	42+00000005	43+00459673
WI 41	WI 42	WI 43

Residual (Mean Distance) per Set	Target Point Id	Set number and residual (Point Id 3, Set 1= +0.3 mm)	Set number and residual (Point Id 3, Set 2= - 0.7 mm)	Set number and residual (Point Id 3, Set 3= +0.3 mm)
410020+D0-DIFF0	42+00000002	43+10000002	44 20000003	45+30000002
410020+D0-DIFF0	42+00000003	43+10000003	44 20000007	45+30000003
410020+D0-DIFF0	42+00000005	43+10000003	44+20000003	4530000007
WI 41	WI 42	WI 43	WI 44	WI 45

TPS1100 - Appl. Prog. Ref. Manual 2.2.0en

Calculate Mode, continued

More Information

Further information is given relating to the differences of the measurements. Single points or full sets can be deactivated prior to calculation.

Active Pts

Number of points used in the calculation.

Sets

Number of sets used in the calculation.

Point no.

Target point.

Pnt. Status

Point used for computation (ON/ OFF).

Set no.

Present displayed set.

Set Status

Point used for computation (ON/ OFF).

Residual

Difference in horizontal direction, vertical direction or slope distance, using the direction of the active set and the averaged direction of all sets. For the vertical directions, the residual is used to compute the standard deviations.

Re-calculate the results and return to the dialog showing the results.

Display the next set.

Display the previous point.

Display the next point.

Exit the program.

Examples and used formulae

A typical example of a Hz measurement is shown in the following list:

The example shows a survey with 3 sets and 4 targets with directions in $^{\circ}$ ' ".

The calculations are carried out according to the following table.

mR=
$$\sqrt{\frac{\Sigma v^2}{(N-1) (s-1)}} = \sqrt{\frac{23''}{(4-1) (3-1)}} = \pm 2''$$

$$mM = \frac{mR}{\sqrt{s}} = \frac{2"}{\sqrt{3}} = \pm 1"$$

PtNr	Face I	Face II	Average face I+II (a)	Reduced average of set (b)	Average (d)	r= d - b	v= r+q	V ²
1	0°00'20"	180°00'17"	0°00'19"	0°00'00"	0°00'00"	0	+1	1
2	24°43'34"	204°43'31"	24°43'33"	24°43'14"	24°43'10"	-4	-3	9
3	84°47'15"	264°47'11"	84°47'13"	84°46'54"	84°46'53"	-1	0	0
4	306°41'52"	126°41'42"	306°41'47"	306°41'28"	306°41'28"	0	+1	1
					q= -(Σ r)/N q =	-(5")/4 +1	∑ v=-1	
1	45°00'13"	225°00'16"	45°00'15"	0°00'00"		0	0	0
2	69°43'24"	249°43'23"	69°43'24"	24°43'09"		+1	+1	1
3	129°47'06"	249°47'08"	-"129°47'07 9	84°46'52"		+1	+1	1
4	351°41'45"	171°41'44"	351°41'45"	306°41'30"		-2	-2	4
					q= -(Σ r)/N q =	-(0)/4 0	∑ v=0	
1	90°00'19"	270°00'19"	90°00'19"	0°00'00"		0	-1	1
2	114°43'28"	294°43'26"	114°43'27"	24°43'08"		+2	+1	1
3	174°47'10"	354°47'15"	174°47'13"	84°46'54"		-1	-2	4
4	36°41'47"	216°41'45"	36°41'46"	306°41'27"		+1	0	0
					q= -(∑ r)/N q =	-(2)/4 -1	∑ v=-2	
							∑ v² =	23

Examples and used formulae, continued

A typical example of a V measurement is shown in the following list:

The example shows a survey with 3 sets and 4 targets and directions in ° ' ".

The calculations are carried out according to the following table. The same method is used for slope distances.

mR=
$$\sqrt{\frac{\Sigma v^2}{N^* s \cdot 1}} = \sqrt{\frac{34"}{4^* 3 \cdot 1}} = \pm 2"$$

$$mM = \frac{mR}{\sqrt{s}} = \frac{2"}{\sqrt{3}} = \pm 1"$$

Pt- Nr	Face I	Face II	Average face I+II (a)	Average (d)	v = d-a	V ²
1	87°13'58"	272°46'24"	87°13'47"	87°13'46"	-1	1
2	88°42'12"	271°18'18"	88°41'57"	88°41'55"	-2	4
3	89°44'22"	270°16'00"	89°44'11"	89°44'11"	0	0
4	91°06'47"	268°53'38"	91°06'34"	91°06'33"	-1	1
1	87°14'01"	272°46'22"	87°14'49"		-3	9
2	88°42'09"	271°18'20"	88°41'54"		+1	1
3	89°44'27"	270°16'00"	89°44'13"		-2	4
4	91°06'47"	268°53'40"	91°06'33"		0	0
1	87°14'01"	272°46'34"	87°13'43"		+3	9
2	88°42'09"	271°18'20"	88°41'54"		+1	1
3	89°44'23"	270°16'04"	89°44'09"		+2	4
4	91°06'49"	268°53'42"	91°06'33"		0	0
					Σ V= -2	
					Σ v ² =	34

Examples and used formulae, continued

Used formulae and designations

- a = In both faces observed and averaged direction.
- b = In both faces averaged and reduced direction of a set
- d = Final averaged direction from all sets.
- r = Difference between a final direction averaged from all sets and a single direction of a set.
- q = Average of the differences (r).
- v = Residuals.
- s = Number of sets
- N = Number of targets.
- r = d b
- v = r + q for horizontal directions
- v = d a for vertical directions

Average of the differences for horizontal directions.

Σr a = ----Ν

Standard deviation of one horizontal direction observed in two faces.

mR=
$$\sqrt{\frac{\Sigma v^2}{(N-1) (s-1)}}$$

Standard deviation of one vertical direction observed in two faces.

mR=
$$\sqrt{\frac{\Sigma v^2}{N^*s-1}}$$

Standard deviation of an averaged direction from all sets.

$$q = \frac{mR}{\sqrt{s}}$$

Configuration

Configuration Editor

Start the "Configuration Editor" from the "SETS MENU" dialog.

ſ	SETS	1	Con	figur	ation		4	1 9)
	Meas	Mode	:			<>		
	User	Dis	p.:			NO	V	
	Hz T	01.	:		0°00'	16''		
	V T	01.	:		0°00'	16''		
	Log	File	:			OFF	V	
	Log	FlNaı	ne:		SETS	.LOG		
	CONT					DEFLT	110	FO
C	_							
	Meas	Job	:	F	ILE01	.GSI	•	
	Data	Job	:	F	ILE02	.GSI	▼	
SHIFT							QL	JIT
	F	1	F2	F3	F4	E!	5	F6
	۲	i 💿	. –	۲	۰ ز	۰ ا	- -	

The "Configuration Editor" sets parameters for further program operations:

Meas Method

> < All targets have to be observed for face II in **opposite** order to the observations in face I.

Configuration, continued

All targets have to be observed > > in face II using the same sequence as for the observations in face I.

 \Diamond Each target has to be observed in face II immediately after its measurement for face I has been completed.

User Displ

Set to YES, the display defined in the "MEAS" application will be used. NO uses the "SETS OF ANGLES" default display.

Hz Tol.

Input the tolerance for Hz-directions. This defines the limit for the difference between the actual direction and the direction observed within the first half set. A change in the horizontal circle orientation is always accounted for, after observing the first target within a new set. If the tolerance is exceeded, a warning is given.

V Tol

Input the tolerance for vertical directions. This defines the limit for the difference in the vertical directions between the actual observations and the directions observed within the first half set. If the tolerance is exceeded, a warning is given.

Loa File

ON, records measurements in a Log-File. The format is described in *chapter*

"Log File" (see next page).

Log FIName

Enter the Log File Name.

Meas Job

Selection of the measurement job for recording measurements.

Data Job

Selection of the data job containing the fix point coordinates (control data).

 \odot

Displays date and version.

Set default values. Default E5

values are displayed in dialog "CONFIGURATION".

Exit the program

Store the current F1 configuration and proceed to the dialog "SETS MENU".

Log File

If "LOG FILE" is set to ON the measurements and the results are stored in the ASCII-file specified within the "Configuration Editor". This file is created in the directory LOG on the memory card. Subsequently, you can read the memory card on your PC and obtain a hard copy of the Log-file.

Data will always be appended to the specified Log-file.

The Log-file contains the following information:

Header

The header line will contain the program used, information about the instrument, the name of the data file as well as date and time the program was started.

Data

The average horizontal and vertical angles of all sets, the standard deviation for one measurement and the standard deviation of an angle averaged from all sets, are stored in the Log-File.

The following data are the result of running Sets of Angles to measure three sets to three target points and computing the horizontal, vertical and distance results (the same data as in the Meas Job shown previously.)

Leica Geosystems Program Sets of Angles V 1.00 Instrument : Meas. File : FILE01.GSI Program Start : 29/04/1998 at 11:04							
Station	: 1 E= H=	100.00000m 400.00000m	n N= n hi=	100.0 0.0	0000m 0000m		
Horizontal 3 Sets me	set results: asured with 3 p	ooints each.					
Standard of Standard of 1. Point I	deviation of any deviation of me d : 2	y measuremen an from all me	t asurement	: s :	0.00038g 0.00022g		
	mean direc	tion :	0.00	000g			
	Refl. Ht.	:	0.00	000m			
	Prism Type	:	Leica ref	l.tape			
	Prism Cons	stant :	0.034	440m			
2. Point I	d : 3						
	mean direc	tion :	38.80)359g			
	Refl. Ht.	:	0.00	000m			
	Prism Type	:	Leica ref	l.tape			
Prism Constant : 0.03440m							
3. Point I	d:5	41	00.00	001 -			
	Doft Lt	uon :	90.63	000m			
			U.UU	ltana			
	Prism Conc	stant :		1.1ape 140m			
		stant .	0.03	++011			

continues next page

Set 1 : Residual : 0.00000g average : 0.00000g average : 0.00000g average : 0.00000g Set 3 : Residual : 0.00000g average : 0.00000g 2. Point Id : 3 Set 1 : Residual : -0.00034g average : 38.80393g Set 2 : Residual : -0.00029g average : 38.80295g Set 3 : Residual : -0.00029g average : 38.80388g 3. Point Id : 5 Set 1 : Residual : -0.00020g average : 90.63357g Set 2 : Residual : -0.00020g average : 90.63381g Set 3 : Residual : 0.00017g average : 90.63344g Vertical set results: 3 Sets measured with 3 points each. Standard deviation of any measurement : 0.00057g Standard deviation of mean from all measurements : 0.00033g	
average 0.00000g average 0.00000g average 0.00000g Set 3 : Residual 0.00000g average 0.00000g 2. Point Id : 3 -0.00034g Set 1 : Residual average 38.80393g Set 2 : Residual 0.00064g average average 38.80395g Set 3 : Residual -0.00029g average average 38.80388g 3. Point Id : 5	et 1 : Residual : 0.00000g
Set 2 : Residual : 0.00000g average : 0.00000g average : 0.00000g 2. Point Id : 3 Set 1 : Residual : -0.00034g average : 38.80393g Set 2 : Residual : 0.00064g average : 38.80295g Set 3 : Residual : -0.00029g average : 38.80388g 3. Point Id : 5 Set 1 : Residual : 0.00003g average : 90.63357g Set 2 : Residual : -0.00020g average : 90.63381g Set 3 : Residual : 0.00017g average : 90.63344g Vertical set results: 3 Sets measured with 3 points each. Standard deviation of any measurement : 0.00057g Standard deviation of mean from all measurements : 0.00033g	average : 0.00000g
Average 1 0.00000g Set 3 : Residual 0.00000g 2. Point Id : 3 -0.00034g -0.00034g Set 1 : Residual : -0.00064g average : 38.80393g Set 2 : Residual : -0.00029g average : 38.80388g	a cooperation and a cooperation of the cooperation
Set 3 : Residual : 0.00000g average : 0.0000g 2. Point Id : 3 Set 1 : Residual : -0.00034g average : 38.80393g Set 2 : Residual : 0.00064g average : 38.80295g Set 3 : Residual : -0.00029g average : 38.80388g 3. Point Id : 5 Set 1 : Residual : 0.00003g average : 90.63357g Set 2 : Residual : -0.00020g average : 90.63381g Set 3 : Residual : 0.00017g average : 90.63344g Vertical set results: 3 Sets measured with 3 points each. Standard deviation of any measurement : 0.00057g Standard deviation of mean from all measurements : 0.00033g	average : 0.00000g
average : 0.00000g 2. Point Id : 3 Set 1 : Residual : -0.00034g average : 38.80393g Set 2 : Residual : 0.00064g average : 38.80295g Set 3 : Residual : -0.00029g average : 38.80388g 3. Point Id : 5 Set 1 : Residual : 0.00003g average : 90.63357g set 2 : Residual : -0.00020g average : 90.63381g set 3 : Residual : 0.00017g Set 3 : Residual : 0.00017g average : 90.63344g /ertical set results: 3 Sets measured with 3 points each. Standard deviation of any measurement : 0.00057g Standard deviation of mean from all measurements : 0.00033g average : 0.00033g	e constant e e e e e e e e e e e e e e e e e e e
 2. Point Id : 3 Set 1 : Residual : -0.00034g average : 38.80393g Set 2 : Residual : 0.00064g average : 38.80295g Set 3 : Residual : -0.00029g average : 38.80388g 3. Point Id : 5 Set 1 : Residual : 0.00003g average : 90.63357g Set 2 : Residual : -0.00020g average : 90.63381g Set 3 : Residual : 0.00017g average : 90.63344g /ertical set results: B Sets measured with 3 points each. 	average : 0.00000g
Set 1 : Residual : -0.00034g average : 38.80393g Set 2 : Residual : 0.00064g average : 38.80295g Set 3 : Residual : -0.00029g average : 38.80388g 3. Point Id : 5 Set 1 : Residual : 0.00003g average : 90.63357g Set 2 : Residual : -0.00020g average : 90.63381g Set 3 : Residual : 0.00017g average : 90.63344g /ertical set results: 3 Sets measured with 3 points each. Standard deviation of any measurement : 0.00057g Standard deviation of mean from all measurements : 0.00033g	
average : 38.80393g Set 2 : Residual : 0.00064g average : 38.80295g Set 3 : Residual : -0.00029g average : 38.80388g 3. Point Id : 5 Set 1 : Residual : 0.00003g average : 90.63357g Set 2 : Residual : -0.00020g average : 90.63381g Set 3 : Residual : 0.00017g Set 3 : Residual : 0.00017g average : 90.63344g Vertical set results: 3 Sets measured with 3 points each. Standard deviation of any measurement : 0.00057g Standard deviation of mean from all measurements : 0.00033g	et 1 : Residual : -0.00034g
Set 2 : Residual : 0.00064g average : 38.80295g Set 3 : Residual : -0.00029g average : 38.80388g 3. Point Id : 5 Set 1 : Residual : 0.00003g average : 90.63357g Set 2 : Residual : -0.00020g average : 90.63381g Set 3 : Residual : 0.00017g average : 90.63344g Vertical set results: 3 Sets measured with 3 points each. Standard deviation of any measurement : 0.00057g Standard deviation of mean from all measurements : 0.00033g	average : 38.80393g
average : 38.80295g Set 3 : Residual : -0.00029g average : 38.80388g 3. Point Id : 5	et 2 : Residual : 0.00064g
Set 3 : Residual : -0.00029g average : 38.80388g 3. Point Id : 5 Set 1 : Residual : 0.00003g average : 90.63357g Set 2 : Residual : -0.00020g average : 90.63381g Set 3 : Residual : 0.00017g average : 90.63344g /ertical set results: 3 Sets measured with 3 points each. Standard deviation of any measurement : 0.00057g Standard deviation of mean from all measurements : 0.00033g	average : 38.80295g
average : 38.80388g 3. Point Id : 5 Set 1 : Residual : 0.00003g average : 90.63357g Set 2 : Residual : -0.00020g average : 90.63381g Set 3 : Residual : 0.00017g average : 90.63344g //ertical set results: 3 Sets measured with 3 points each. Standard deviation of any measurement : 0.00057g Standard deviation of mean from all measurements : 0.00033g	et 3 : Residual : -0.00029g
3. Point Id : 5 Set 1 : Residual : 0.00003g average : 90.63357g Set 2 : Residual : -0.00020g average : 90.63381g Set 3 : Residual : 0.00017g average : 90.63344g /ertical set results: 3 Sets measured with 3 points each. Standard deviation of any measurement : 0.00057g Standard deviation of mean from all measurements : 0.00033g	average : 38.80388g
Set 1 : Residual : 0.00003g average : 90.63357g Set 2 : Residual : -0.00020g average : 90.63381g Set 3 : Residual : 0.00017g average : 90.63344g Vertical set results: 3 Sets measured with 3 points each. Standard deviation of any measurement : 0.00057g Standard deviation of mean from all measurements : 0.00033g	
average : 90.63357g Set 2 : Residual : -0.00020g average : 90.63381g Set 3 : Residual : 0.00017g average : 90.63344g Vertical set results: 3 3 Sets measured with 3 points each. Standard deviation of any measurement : 0.00057g Standard deviation of mean from all measurements : 0.00033g	et 1 : Residual : 0.00003g
Set 2 : Residual : -0.00020g average : 90.63381g Set 3 : Residual : 0.00017g average : 90.63344g Vertical set results: 3 Sets measured with 3 points each. Standard deviation of any measurement : 0.00057g Standard deviation of mean from all measurements : 0.00033g	average : 90.63357g
average : 90.63381g Set 3 : Residual : 0.00017g average : 90.63344g /ertical set results: 3 Sets measured with 3 points each. Standard deviation of any measurement : 0.00057g Standard deviation of mean from all measurements : 0.00033g	et 2 : Residual : -0.00020g
Set 3 : Residual : 0.0001/g average : 90.63344g Vertical set results: 3 Sets measured with 3 points each. Standard deviation of any measurement : 0.00057g Standard deviation of mean from all measurements : 0.00033g	average : 90.63381g
average : 90.63344g Vertical set results: 3 Sets measured with 3 points each. Standard deviation of any measurement : 0.00057g Standard deviation of mean from all measurements : 0.00033g	et 3 : Residual : 0.00017g
Vertical set results: 3 Sets measured with 3 points each. Standard deviation of any measurement : 0.00057g Standard deviation of mean from all measurements : 0.00033g	average : 90.63344g
Vertical set results: 3 Sets measured with 3 points each. Standard deviation of any measurement : 0.00057g Standard deviation of mean from all measurements : 0.00033g	
3 Sets measured with 3 points each. Standard deviation of any measurement : 0.00057g Standard deviation of mean from all measurements : 0.00033g	Its:
Standard deviation of any measurement : 0.00057g Standard deviation of mean from all measurements : 0.00033g	a with 3 points each.
Standard deviation of mean from all measurements : 0.0003/g	ion of any management 0.00057g
Standard deviation of mean normal measurements . 0.000339	ion of mean from all measurements : 0.00037g
continues next	continues next p

1. Poir	nt ld : 2		
	mean direction :	64.56104g	
	Refl. Ht. :	0.0000m	
	Prism Type :	Leica refl.tape	
	Prism Constant :	0.03440m	
2. Poir	nt ld : 3		
	mean direction :	62.15225g	
	Refl. Ht. :	0.0000m	
	Prism Type :	Leica refl.tape	
0 D .	Prism Constant :	0.03440m	
3. Poli	nt Id : 5	74.40.400-	
	mean direction :	74.12466g	
	Rell. Ht.		
	Prism Constant :		
	Filsin Constant .	0.0544011	
Results	of single sets:		
recound	of onigio ooto.		
1. Poir	nt ld : 2		
	Set 1 : Residual :	0.00022g	
	average :	64.56081g	
	Set 2 : Residual :	0.00042g	
	average :	64.56061g	
	Set 3 : Residual :	-0.00064g	
	average :	64.56168g	
2. Poir	nt Id : 3		
	Set 1 : Residual :	0.00030g	
	average :	62.15195g	

continues next page

	Se	t 2	:	Residual	:	-0.00041g	
				average	:	62.15266g	
	Se	t 3	:	Residual	:	0.00011g	
				average	:	62.15214g	
3.	Point Id : 5						
	Se	et 1	:	Residual	:	0.00103g	
				average	:	74.12364g	
	Se	t 2	:	Residual	:	-0.00026g	
				average	:	74.12493g	
	Se	t 3	:	Residual	:	-0.00076g	
				average	:	74.12543g	
Dis 3 S Sta Sta	stance set res Sets measured andard deviati andard deviati	ults: d wit on o on o	h 3 If ar If m	points eac ny measure ean from a	h. emen [.] II me	t : asurements :	0.00004m 0.00002m
1.	Point Id : 2						
	me	ean d	dista	ance :		3.07642m	
	Re	efl. H	t.	:		0.00000m	
	Pr	ism ⁻	Тур	e :		Leica refl.tape	
	Pr	ism (Cor	stant :		0.03440m	
2.	Point Id : 3						
	me	ean o	dista	ance :		2.90853m	
	Re	eti. H	t.	:		0.00000m	
	Pr	ism	Тур	e :		Leica refl.tape	
	Pr	ism (Cor	istant :		0.03440m	
3.	Point Id : 5						

continues next page

122

	mean dis	stance :		4.59673m	
	Refl. Ht.	:		0.0000m	
	Prism Ty	pe :		Leica refl.tape	
	Prism Co	onstant :		0.03440m	
Results of s	single sets:				
	C C				
1. Point Id	: 2				
	Set 1	: Residual	:	0.0000m	
		average	:	3.07640m	
	Set 2	: Residual	:	-0.00003m	
		average	:	3.07645m	
	Set 3	: Residual	:	0.0000m	
		average	:	3.07640m	
2. Point Id	: 3	-			
	Set 1	: Residual	:	0.00003m	
		average	:	2.90850m	
	Set 2	: Residual	:	-0.00007m	
		average	:	2.90860m	
	Set 3	: Residual	:	0.00003m	
		average	:	2.90850m	
3. Point Id	: 5				
	Set 1	: Residual	:	0.00003m	
		average	:	4.59670m	
	Set 2	: Residual	:	0.00003m	
		average	:	4.59670m	
	Set 3	: Residual	:	-0.00007m	
		average	:	4.59680m	
		2			

Traverse

Introduction

This manual describes the "Traverse" program of the TPS1100 Professional Series instruments.

Using data about direction and distance, the program continuously computes the coordinates of the station (in the example shown above, the instrument "moves" from one station to the next, previously measured point) and aligns the horizontal circle.

For a point whose coordinates are known, the deviation from the coordinates determined by measurement can be computed and displayed.

There is no adjustment of these differences in coordinates and direction. Subsequently, however, the measurements stored on the PCMCIA can be processed with the assistance of an appropriate software program. Individual stations can be calculated as "sideshots" (SP). The coordinates and directions of these points are also determined in the course of this program.

If the program is terminated (e.g. to record a detail point), the values remain stored. The measurement procedure can be resumed after calling up the program again.

Traverse Menu

Traverse Menu

In this display, the individual functions of the program can be called. After a function has been performed, the user returns to this display.

Occupy Station

Select to occupy a station previously measured in this traverse.

Traverse Point

Select to measure to the next traverse station.

Sideshot Point

Select to measure to a sideshot point.

TPS1100 - Appl. Prog. Ref. Manual 2.2.0en

Close Traverse

Select to compute the misclosure data for the current traverse.

New Traverse

Select to discard any retained information and start a new traverse.

End Program

Select to end the traverse program. Data for the current traverse will be retained in memory for use if the program is restarted later.

Press to accept the currently highlighted selection.

Start the "CONFIGURATION".

Press this key combination to quit the

Traverse program at any time.

New traverse

Any data of a previous traverse in the memory will be erased at the start of a new traverse. To avoid unintentional erasing, a confirmation must be made.

The first dialog requests the entry of the station point number, height of instrument, station coordinates and the setting of a specified Hz-angle.

	Trav Stati Inst. Stn. Stn. Stn. Hz	St on Id: Ht. : East : North: Elev.:	art Tr S 23	averse tatio 23541 55231 521 33°15'	n100 .635 .025 .177 .358 25''		
SHIFT			REC	Hz0	IMPOR		
	• F1	• F2	• F3	• F4	• F5	• F6	

Station Id

Input the Point Id of the first occupied station in the traverse.

Inst. Ht.

(Optional, but necessary to correctly compute elevations.) Input the height of the instrument tilting axis above the occupied station.

Stn Fast

Input the Easting, or X ordinate, of the occupied station. The station coordinates may be imported using the IMPOR hotkey.

Stn.North

Input the Northing, or Y ordinate, of the occupied station.

Stn.Elev

(Optional, but necessary to compute elevations.) Input the Elevation, or Z ordinate, of the occupied station.

Hz

The current horizontal circle value.

Records manually entered F3 station data on the active recording device. The program proceeds to the "Measure Mode" dialog.

- Set horizontal-circle direction. F4 For further information. please refer to chapter "Measure & Record" of "System" - user manual.
- Import station coordinates. F5 For further information. please refer to chapter "Setup" of "System" - user manual.
 - Press this key F5

combination to import and view the stored coordinates of a point.

Select method of orientation

Three different methods orientation are available

- 1. Confirm the orientation already set in the system.¹ No measurements are performed (SYS).
- 2. Calculation of an azimuth from coordinates to one tie point. A following measurement to the tie point orients the Hz-circle (INPUT). (See "Calculation Azimuth".
- 3. Manual input of the azimuth to one tie point. A measurement to the tie point is required (AZI). (See "Enter Backsight Azimuth")
- 1 If the orientation was previously determined with the "ORIENTATION" program, for example.

New traverse, continued

Data Job

Filename and location of the Job containing point coordinates to be recalled.

Search for

Describes what will be searched for in the Data Job.

Point Id

Input the Point Id to search for.

Search coordinates in the Data Job. Continue with the "Measure Backsight Point" dialog.

Select the "Measure F2 Backsight Point" dialog and enter the azimuth.

Manual entry of coordinates F3 for the tie point. The standard input dialog of the TPS 1100 is used. Continue with the "Measure Backsight Point" dialog.

Confirms the present F4 \odot orientation. Continues with the dialog "TRAVERSE MENU".

Search and view coordinates in the Data Job.

Calculate Azimuth

This dialog corresponds to the **TPS1100** Professional series "MEASURE" dialog. On completion of a measurement, the program continues either with "MULTIPLE MEAS" or with the "TRAVERSE MENU" according to the settings in the configuration.

Trav S Measure Ba Point Id Refl. Ht. Hz V Slope Dist ALL DIST	itart Traverse icksight Poin : 1 : 249°10' : 90°19' : - REC CONT j	11 500 300 m 20'' 52'' 1ARGT
Height Dif East North Elevation	: - : -	m m m

New traverse, continued

Simultaneously measure and record data in the Meas Job.

F3 Measure a distance¹ and record data in the

Meas Job.

Measure a distance without recording in

the Meas Job.

Proceed to the dialog "TRAVERSE MENU".

Enter target data. (see User Manual)

F4 Change the theodolite face.

¹ Distance measurement is optional.

Enter Backsight Azimuth

This dialog corresponds to the TPS 1100 Professional series "MEASURE" dialog with the additional entry of the backsight azimuth.

On completion of the first measurement, the program continues either with "MULTIPLE MEAS" or with the "TRAVERSE MENU" according to the settings in the configuration.

ſ	Trav\	Sta	rt Trav	erse		
	Measur	e Back	sight	Point		E
	BS Azi	.muth:			g	
	Point	Id :		5	00	
	Refl.	Ht. :		1.3	00 m	
	Hz	:	249	°10'20		
	V	:	90	°19'52		
	ALL	DIST	REC CO	DNT TA	RGT	
	-					
	Slope	Dist:			m	
	Height	Dif:			m	
	East	:			m	
	North	:			m	
	Elevat	ion :			m	
CUICT		_	Tz	STT		
ISTIFI I			1	~11	- Q	
	F1	F2	E3	F4	E5	E6

BS Azimuth

Enter the backsight azimuth for the orientation.

Simultaneously measure and record data in the Meas Job.

Measure a distance¹ and record data in the

Meas Job.

Measure a distance without recording in

the Meas Job.

Enter target data. (see User Manual)

SHIFT F4

Change the theodolite face.

¹ Distance measurement is optional.

Occupy station

The instrument is set up on previously measured traverse point. A measurement (distance measurement is optional) is made to the last traverse point.

This dialog corresponds to the **TPS1100** Professional series "MEASURE" dialog. After the function has been performed, the station coordinates and orientation are set in the instrument.

	rav∖	0cc	upy	Trav	/erse	Pt			S
S	tatio	on I	d :				2		Σ
Ba	acksi	ight					1		
I	nst.	Ĥt.	:			1.30	00	m	
Re	efl.	Ht.	:			1.30	00	m	
Hz	z		:	2	49°10	20	• •		
v			:	1	90°19	52	• •		
		DIS	тΙ	REC	CONT	TAR	GT	SS	
S	Lope	Dis	t:					m	
S] He	Lope eight	Dis t Di	t: f:				-	m m	
S] He Ea	Lope eight ast	Dis t Di	t: f: :				 	m m m	
S] He Ea No	Lope eight ast orth	Dis t Di	t: f: :				 	m m m	
S] He Ea No	Lope eight ast orth Levat	Dis t Di tion	t: f: :				 	m m m m	
S] He Ea No E]	Lope eight ast orth Levat	Dis t Di tion	t: f: :				 	m m m m	
S] He Ea No E]	Lope eight ast orth Levat	Dis t Di tion	t: f: :		1<>11			m m m m QUI	T
	Lope eight ast orth Levat	Dis t Di tion	t: f: :	F3			 	m m m m	T

Station Id Station identifier

Backsight Backsight identifier

Simultaneously measure and record data in the Meas Job.

F3 F2

Meas Job.

 \odot

Measure a distance without recording in

Measure a distance¹

and record data in the

the Meas Job.

Proceed to the dialog F4 "TRAVERSE MENU".

Enter target data. F5 (see User Manual)

Toggles to select the last measured sideshot, or the last measured traverse point, as the new station.²

SHIFT	۲	F4

Change the theodolite face.

- Distance measurement is optional.
- 2 Only active if a sideshot point was measured.

Traverse Point / Sideshot Point

Only one Traverse Point may be measured to (distance required) from any given Occupy Station. As many Sideshot Points as desired may be measured (distance required).

This corresponds to the TPS1100 Professional series "MEASURE" dialog. After the measurement, the program continues either with "MULTIPLE MEAS" or with the "TRAVERSE MENU" according to the settings in the configuration.

Irav/MeasurePoint Id :Refl. Ht. :Hz :V :Slope Dist:Height Dif:ALL DIST	Traverse Point 2 1.300 m 2 90°10'20'' 9 90°19'52'' m m m REC CONT TARGT
East : North : Elevation :	m m m
	F3 F4 F5 F6

SHI ®

Simultaneously measure and record data in the Meas Job.

F2	0

F3

Measure a distance and record data in the

Meas Job.

Measure a distance without recording in

the Meas Job.

Proceed to the dialog "TRAVERSE MENU".

• F5

Enter target data. (see User Manual)

SHIFT Change the theodolite face.

Close traverse

The program requires a closing point for comparison with the last traverse point measured. The default point number is the starting point of the traverse.

	F1
۲	

Seach coordinates in the Data Job.

Enter coordinates using the standard input dialog.

Confirms the coordinates of the starting point.

Search and view coordinates in the database.

Trav	Closure	Results		<u>।</u> ସ
No.of Pts	5.:	3		
Length	:	1676.367	m	
Hor. Misc	:1:	0.040	m	
Vert.Misc	:1:	0.262	m	
∆East	:	-0.016	m	
∆North	:	-0.037	m	
	STORE	PLOT MENU		

SHIFT											QUI	ίŢ
	۲	F1	۲	F2	۲	F3	۲	F4	۲	F5	۲	F6

No. of Pts. Number of traverse points

Length Length of traverse

Hor. Miscl. Horizontal misclosure

Vert.Miscl. Vertical misclosure **Δ East** Misclosure in easting (X)

Δ North Misclosure in northing (Y)

Azi H.Misc Azimuth of horizontal misclosure

H Precisn Position precision

=

=

traverse length

horizontal misclosure

V Precisn Vertical precision

traverse length

vertical misclosure

Close traverse, continued

The results of the traverse are recorded in the Meas

Job.

Plot of the traverse.

Continue with the "Traverse Menu".

Examples

Codeblocks with results of the traverse closure:

WI 41:	Code 38
WI 42:	Number of traverse points.
WI 43:	Length of traverse (sum of legs).
WI 44:	Azimuth of misclosure

410010+0000038 42....+0000005 43....+01013515

WI 41	Code 39
WI 42	Horizontal Misclosure
WI 43:	Misclosure easting
WI 44:	Misclosure northing
WI 45:	Misclosure in height

410011+00000039 42...+0000123 43...+00000045 44...+00000114 45...+00000087

Close traverse, continued

WI 41	Code 40
WI 42	Position precision (traverse length / Horizontal
	misclosure)
WI 43:	Vertical precision (height difference / Horizontal
	misclosure)

410012+00000040 42....+0008239 43....+00011650

Measurement block with the traverse Station Coordinates of station points

- WI 11: Point number
- WI 25: Δ Hz (correction of orientation)
- WI 84: E_0 easting coordinate
- WI 85: N_0^{i} northing coordinate
- WI 86: Height
- WI 88: Instrument height

110015+00123456	25.143+14611200	8440+00001215
8540-00003153	8640+00403285	8810+00001555

Plot

Generates a plot of the traverse.

Configuration

Configuration Editor

Start the "Configuration Editor" from the "traverse menu" dialog.

The "Configuration Editor" sets parameters for further program operations:

Two Faces

YES for dual-face measurement for single-face. NO

Mult.Meas

- YES to allow multiple measurements,
- NO for single measurement.

Code

Input the code number used when recording results in the Meas Job (max. 8 characters).

Log File

Set to ON, the program will record measurement data in the Log File according to the format described on chapter Log File.

Log FIName

Enter the Log File Name.

Accept the displayed parameters and return to the "TRAVERSE MENU".

Set all values to default. Default values are shown in

dialog.

Display the Traverse Information dialog.

Dual-face Measurement

In the dual-face mode, the program will prompt for measurements in both faces. When both measurements are taken, the program will check the difference between the two. If the difference in angle is within 27' (0.5 gon) and the difference of two measured distances is within 0.5 m (1.64 ft), the observations will be averaged. These tolerances are used to avoid errors in target identification. If exceeded an error message will be displayed.

Multiple Measurement

The measurement to a point can be repeated as often as desired to achieve a higher accuracy or reliability. The mean value of the measurements and the respective standard deviation is displayed.

Po No σH σV σS ØH	av\ int z lope z	M No. f Mea: Dist CLEAR	.11ti : : : : : :	iple 4 EC	Mea 0°00 0°00 5°00	S 0'0 0. 0'5 T A	500 00' 00' 2'		1 n	MC
ØV ØS	lope	Dist		10	3°4!	5'2 50.	5'' 125	5 n	n	
•	F1	F2		F3	F	-4		F5		F6

Point no.

The target point number.

No. of Meas

Counter of the measurements.

σHz

Standard deviation of the horizontal direction for a single measurement.

σV

Standard deviation of the vertical angle for a single measurement.

σ Slope Dist

Standard deviation of the slope distance for a single measurement.

Ø Hz

Mean value of the Hzmeasurements.

øν

Mean value of the V-measurements.

ØSlope Dist

Mean value of the slope distances.

Further measurements.

Delete all measurements of the current point and start again.

Record the mean value of the F3 measurements on the active recording device. Return to the "TRAVERSE MENU" dialog.

۲

Enter target data. (see User Manual)

Accept the mean values and return to the "TRAVERSE

Log File

If "LOG FILE" is set to ON, the measurements and the results are stored in the LOG FILE specified within the "Configuration Editor". This file is created in the directory LOG on the memory card. Subsequently, you can read the memory card on your PC and obtain a hard copy of the Log-file.

Data will always be appended to the specified Log-file.

The Log-file contains the following information:

Header

The header line will contain the name of this program, information about the instrument, the name of the data file and date and time.

Record

Computed coordinates of traverse points are continously stored. The option Close traverse in the "TRAVERSE MENU" displays and stores at any time the coordinate differences of traverse points of which the coordinates are known.

Log File, continued

Leica Geosystem Instrument Meas. File Program Start	ns F : : :	Program Traver TCA1103, Ser MYFILE.GSI 20/04/1998 at	se V 1.00 ial 102999 10:25		
Backsight Station	:	500 Pt.1 E= -0.679m	N= 9.545m	H= 400.062m	hi= 1.530m
Station	:	Pt.2 E=-13.462m	N=10.528m	H= 400.170m	hi= 1.650m
Station	:	Pt.3 E=26.513m	N=16.821m	H= 401.260m	hi= 1.610m
Last Trav.Pt.	:	501 E= -77.949m	N= 25.037m	H= 399.923m	
Closing Pt.	:	501 E= -78.016m	N= 24.996m	H= 400.181m	
No. of Pts. Length Hor. miscl. Vert. miscl. DEasting DNorthing Azi H.miscl H Precision V Precision	:	4 82.788m 0.047m 0.268m -0.017m -0.031m 226°51'25" 2036 2356			

Typical log file entry in the "TRAVERSE"

Local Resection

Introduction

This manual describes the "Local Resection" program of the TPS1100 Professional Series.

The program can be used to deduce the three-dimensional local coordinates for the instrument station and the orientation of the horizontal circle from measurements to 2 target points. To compute the position coordinates, at least 4 elements (2 distances and 2 directions) are necessary.

For simultaneous determination of the local station elevation, height of instrumentand height of reflector must already have been input.

The program allows measurement in single or dual-face mode.

Station Data

Enter station point number and height of the instrument

Proceed to the dialog "MEASURE POINT 1"

Quit program.

Two points are measured from any instrument station. The first point measured forms the centre of a local coordinate system (N=0; E=0; H=0). The second point measured determines the direction of the positive N - axis.

Target Point

This dialog is similar to the TPS1100's basic "MEASURE MODE" dialog. Once the measurement to the first and to the second point is taken, the program will proceed to the dialog "RESULTS".

\int	LRes\	Me	asure	Point '		– D
	Point	Id :			12	
	Point	Code:		-		
	Refl.	Ht. :		1	.300	m
	Hz	:		2°10'	20''	
	V	:	1	90°19'	52''	
	Horiz	Dist:		-		m
U	ALL	DIST	REC	CONT	TARGT	
	Ht. Di	iff. :		1	.002	m
	East	:		231	.463	m
	North	:		56	.785	m
	Elevat	tion :		72	.235	m
SHIFT				I⇔II		QUIT
۳	F1	F2	F3	F4	F5	5 F6

Simultaneously measure and record data in the active measurement job.

Measure a distance.

F5 \odot

> F4 \bigcirc

SHIFT

Record the measurement in the active measurement job.

F4 Accept the measurement.

> Enter target data. (see User Manual)

> > Change the theodolite face.

In this dialog the calculated station coordinates are shown with orientation.

Calculation

	LRes\ Stati East North Eleva Hz Or	<u>Local</u> on Id tion i.	Resec.	Resul - 3 0 35°34'	ts [1 3.369 0.569 0.235 56''	
	SET		STORE			
SHIFT						QUIT
	• F1	F:	2 F3	• F4	• F5	• • F6

Station Id Station point number

East

Calculated E (local) for the station

North

Calculated N (local) for the station

Elevation

Calculated Elevation (local) for the station

139

Calculation, continued

Hz. Ori

Angular correction needed to orient the instrument

Set orientation and station coordinates on the

instrument. Note that this key will end the program.

Record the following results in the measurement job:

- WI 11 Station Point Number
- WI 25 Orientation correction
- WI 84 Station Easting
- WI 85 Station Northing
- WI 86 Station Elevation
- WI 87 Last reflector height used
- WI 88 Instrument Height

F6 Exit the program.

Depending on the configuration that is loaded onto your TPS1100 instrument, you may not see some or all of the options referred to below. See your Leica Geosystems dealer for more information about the configuration of your instrument.

Configuration Editor

Start the "Configuration

Editor" from the

"STATION DATA" dialog.

The "Configuration Editor" sets parameters for further program operations:

Two Faces

YES for dual-face measurement, NO for single-face.

Meas. Job

Selection of the measurement job for recording measurements.

Configuration Editor, continued

Data Job

Selection of the data job containing the fix point coordinates (control data).

Store the current F1 configuration and proceed to the dialog "STATION DATA".

Set the value to the default.

Displays date and version of the running application.

Dual-face Measurement

In the dual-face mode, the program will prompt for measurements in both faces. When both measurements are taken, the program will check the difference between the two. If the difference in angle is within 27' (0.5 gon) and the difference of two measured distances is within 0.5 m (1.64 ft), the observations will be averaged. These tolerances are used to avoid errors in target identification. If exceeded an error message will be displayed.

COGO

Introduction

This manual describes the "COGO" program of the TPS1100 Professional Series. The following provides a general overview of the individual COGO functions.

The "**Inverse**" routine computes the direction and distance between two points.

The **"Traverse**" routine computes a new coordinate point given a direction and distance from a known point (Polar stakeout).

The "Intersections" routine computes:

- Bearing-Bearing intersections,
- Bearing-Distance intersections,
- Distance-Distance intersections or
- Intersection by Points

The function "**Offsets**" consists of the following subfunctions:

- "Distance point straight line" Calculates the difference in length/ abscissa and the lateral deviation/ ordinate with reference to a basis line emanating from a known point.
- "Orthogonal point calculation" A new point can be calculated which emanates from a basis line using the difference in length/ abscissa and the lateral deviation/ ordinate.

The "**Point Arc**" routine computes a radius point given any three points.

The point coordinates can either:

- be determined by measurement,
- entered manually using a keyboard or
- read from the memory card.

Data, both measured and read from the memory card, can be mixed. This means, however, that station coordinates and orientation have to be correctly set.

Directions and distances can be entered manually, called up or freshly determined. The values can then be amended by means of multiplication, division, addition and subtraction.

The program "Stakeout" can be called up directly from the individual result dialog boxes (if available) in order to set out the points immediately.

The program "Stakeout" assumes that the instrument is set and oriented to a known point.

Configuration

Depending on the

configuration that is loaded onto your TPS1100 instrument, you may not see some or all of the options referred to below. See your Leica Geosystems dealer for more information about the configuration of your instrument.

Start the "Configurations Editor" from the "COGO MENU" dialog.

Confi	guratio	n		6
e:	A	ZIMUTI	H V	Ζ
:		YE	s 🔻	
:	FILE	01.GS	I V	
:	FILE	02.GS	I V	
		DEFL		NFO
		QUI	Γļ	
		Configuration Periodic A Periodic A Per	Contrigunation Per AZIMUTI FILEO1.GS: FILEO2.GS: DEFL	Configuration (Pe: AZIMUTH ▼ : YES ▼ : FILE01.GSI ▼ : FILE02.GSI ▼ DEFLT I QUIT

The "Configuration Editor" sets parameters for further program operations:

Direc. Type Bearing Azimuth

Offset

YES entering a parallel displacement is possible

NO entering a parallel displacement is not possible

Meas Job

Selection of the measurement job for recording measurements.

Data Job

Selection of the data job containing the fix point coordinates (control data).

Accept displayed values and proceed to the dialog "COGO MENU".

Set all values to default. The values are shown in the dialog above.

Displays date and version.

F6

Exit the program.

Function selection (COGO Menu)

Call up the SHIFT F2 "Configuration-Editor".

Inverse (polar calculation)

Computes distance and direction between two points.

Search

- Direction (magnetic bearing or azimuth)
- Horizontal distance

Given

- point 1 (E, N)
- point 2 (E, N)

Station coordinates and orientation need to have been set correctly before the coordinates of point 1 (and/or 2) can be determined by measurement.

Call up the function Inverse in ۲ the "COGO MENU" dialog.

	COGO Data Sea Poi) a Job rch f ntId	Inve : or: :	rse F MYFII Po:	rom LE.GS intId	I A: +E+N 58	
SHIFT ®		RC ME	AS IN	PUT F3	F4	VIEW	QUIT

Search for the coordinates of the first (second) point in the datajob.

Inverse (polar calculation), continued

F2 \bigcirc

Measuring the first (second) point of the straight line.

Manual entering of the first (second) point of the straight

line.

Search and display the coordinates of the point found in the active data job.

SHIFT F6

Exit the program.

The following dialog box shows the result of the polar calculation from both the given points:

ſ	COG	0\	I	nve	rse	Re	sul	ts				MC
	Fro	m		:					101	0		
	То			:					102	20		
	Sou	Ith	Nes	t :		8	39°	37'	45 [°]	,		
	Hor	٠iz	.Di	st:				31	.23	37	m	
	COI	NT										
SHIFT											QU	IT
۲		F1		F2		F3		F4		F5		F6
	۲		۲	. –	۲		۲		۲		۲	

SouthWest

Display of magnetic bearing. If "Azimuth" is selected in the configuration during "Direc. Type:", then the azimuth will be displayed between both the points.

Horiz.Dist.

Display of horizontal distance between the points

F6

Return to "COGO Menu".

SHIFT ۲

Exit the program.

From

Display of point number of the first point

Το

Display of point number of the second point

Traverse

Computes a new point given a direction and distance from a known point.

Search

coordinates of point 2 (E, N)

Given

- point 1 (E, N),
- Direction (magnetic bearing or azimuth),
- Horizontal distance.

F1

Station coordinates and orientation need to have been set correctly before the coordinates of point 1 can be determined by measurement.

Call up the function "Traverse" 2 from the "COGO MENU".

Search for coordinates of the

first point in the data job. Continue to "Defining direction by

magnetic bearing" or "Defining

direction by azimuth".

Measuring the first point.

Manual entering of the first point.

Search and display the coordinates of the point found in the active data job.

Exit the program.

Defining direction by magnetic bearing

If "Bearing" is selected in the configuration for "Direc. Type:", then the following dialog box appears:

Quadrant

Enter quadrant:

- 1 = NorthEast
- 2 = SouthEast
- 3 = SouthWest
- 4 = NorthWest

Northeast

Enter magnetic bearing

Offset

Enter parallel displacement. Only active if "YES" is entered in the configuration during "Offset:" Left = negative parallel offset Right = positive parallel offset

Accept displayed values and F1 proceed with dialog "Distance to Traverse".

Determining the direction by means of the function "Polar calculation"(refer to chapter "Inverse").

F5

INPUT Enter quadrant, magnetic bearing RCALL Call up of a direction which has been previously stored using the function "Polar calculation"

Changing the direction see under existing

dialog box "MODIFY BEARING"

NorthEast

Display of entered magnetic bearings

Multiply

Entering multiplication factor

Divide

Entering division factor

Add

Entering angle for a correction to the right

Subtract

Entering angle for a correction to the left

NorthEast

Display of corrected magnetic bearings

Accept displayed values and proceed with dialog "Distance

to Traverse".

If "Azimuth" is selected in the configuration for "Direc. Type:", then the following dialog box appears:

Defining direction by Azimuth

Azimuth

Entering Azimuth

Offset

Entering parallel displacement. Only active if "YES" is entered in the configuration during "Offset:" Left = negative parallel offset Right = positive parallel offset

Accept displayed values and proceed with dialog "Distance to Traverse".

Determining the direction by F2 means of the function "Polar calculation" (refer to chapter "INVERSE").

F5

INPUT Entering Azimuth

RCALL Call up of a direction which has been previously stored using the function "Polar calculation".

Changing the direction (refer to dialog "Modify

Azimuth ")

Exit the program.

Defining direction by Azimuth, continued

Defining horizontal distance

ſ	COGO \	Modify	Azimuth		- 2)
	Azimuth	:	0°00'0	00''	
	Multiply	:			
	Divide	:			
	Add	:	0°00'0	0,,	
	Subtract		0°00'0	00,,	
	AZIMUTN	•	0.00,0	10	
l	CONT				
SHIFT					QUIT
	• F1 •	F2	F4	• F5	• F6

Azimuth

Display of corrected Azimuth

Accept displayed values and proceed to *dialog "Distance to Traverse"*.

Azimuth

Display of entered Azimuth

Multiply

Entering multiplication factor

Divide

Entering division factor

Add

Entering angle for a correction to the right

Subtract

Entering angle for a correction to the left

Horiz.Dist Entering horizontal distance

Offset

Entering parallel displacement. Only active if "**YES**" is entered in the configuration during "**Offset:**" Left = negative parallel offset Right = positive parallel offset

Accept displayed values and proceed to *dialog "Traverse s"*.

Defining horizontal distance, continued

Traverse results

Determining the distance by means of the function "**Polar calculation**" (*refer to chapter* "*Inverse*").

INPUT Entering horizontal distance

RCALL Call up of a distance which has been previously stored using the function "Polar calculation".

SHIFT	۲

Changing the distance (refer to dialog "Modify

Distance").

Exit the program.

Horiz.Dist.

Display of entered horizontal distance

Multiply

Entering multiplication factor

Divide

Entering division factor

Add

Entering distance for a positive correction

Subtract

Entering distance for a negative correction

Horiz.Dist.

Display of corrected horizontal distance

Accept displayed values and proceed to *dialog* "TRAVERSE RESULTS".

The following dialog box shows the result of the traverse:

Point Id

Entering point number of the point to be accepted

East

Display of east coordinate

North

Display of north coordinate

Elevation Entering height (optional)

Traverse results, continued

Return to "COGO MENU".

The following results have been stored in the active

measurement data file:

- WI 11 Station Point Number
- WI 81 Easting coordinate
- WI 82 Northing coordinate
- WI 83 Elevation (optional)

If "Point Id" has not been entered, the function is not available.

Call up the program "Stakeout".

The program "Stakeout" assumes that the instrument is set and oriented to a known point. If "Point Id" has not been entered, the function is not available.

SHIFT **F6** Exit the program.

Intersections

3

Call up the

Bearing-Bearing Intersection

"COGO MENU". COGO Intersections 1 Bearing-Bearing 2 Bearing-Distance 3 Distance-Distance 4 Intersection by Points 5 End Intersections CONT F1 F2 F3 F4 F5 F6

function"Intersections" from the

Search

• Coordinates of intersection (E, N)

Given

- point 1 (E, N), direction (magnetic bearing or azimuth)
- point 2 (E, N), direction (magnetic bearing or azimuth)

Bearing-Bearing Intersection, continued

Station coordinates and orientation need to have been set correctly before the coordinates of point 1 (and/or 2) can be determined by measurement.

Call up the function "Bearing-۲ Bearing" from the menu "Intersections".

ſ	COGO)\	1st	Be	aring	From				MC
	Data	аJ	ob	:	FIL	E02.G	SI /	۰ :۱	•	
	Sear	rch	fo	r:	Po	ointI	d+E+	⊦N		
	Poir	ntI	d	:			ţ	58		
	SEAR	C	MEAS]]]	NPUT		VI	W		
SHIFT									QU:	LΤ
	۲	F1	● F	2	• F3	• F4		F5	۲	F6

Search for the coordinates of F1 \odot the first (second) point in the datajob.

Measuring the first (second) point of the straight line.

Manual entering of the first

(second) point of the straight

F3 \odot line.

F5

SHIFT

Search and display the coordinates of the point found in the active data job.

> Exit the program. F6

If "Bearing" is selected in the configuration for "Direc. Type:", then the following dialog box appears:

Quadrant

Enter quadrant (First or second straight lines)

- 1 = Northeast
- 2 = Southeast
- 3 =Southwest
- 4 = Northwest

NorthEast

Enter magnetic bearing (First or second straight lines) If "Azimuth" is selected in the configuration during "Direc.Type:", then the azimuth of the first straight line (or the second straight line) can be entered.

Offset

Entering parallel displacement. Only active if "YES" is entered in the configuration during "Offset:" Left = negative parallel offset Right = positive parallel offset

Accept displayed values.

Determining the direction by means of the function "Polar

calculation" (refer to chapter "Inverse").

INPUT

Enter bearing, mangnetic bearing resp. azimuth (if "Azimuth" is selected in the configuration during "Direc. Type:"

RCALL

Call up of a direction which has been previously stored using the function "Polar calculation".

SHIFT

Changing the direction F5 (as dialog box "Modify Bearing", "Modify Azimuth")

SHIFT ۲

Exit the program.

The following dialog box shows the result of the bearing-bearing intersection:

Point Id

Entering point number of the bearingbearing

East

Display of east coordinate

North

Display of north coordinate

Elevation

Entering height (optional)

Bearing-Bearing Intersection, continued

 \odot

Return to "INTERSECTIONS".

The following results have been stored in the active

measurement data file:

- WI 11 Station Point Number
- WI 81 Easting coordinate
- WI 82 Northing coordinate
- WI 83 Elevation (optional)

If "Point Id" has not been entered, the function is not available.

Call up the program "Stakeout".

The program "Stakeout" assumes that the instrument is set and oriented to a known point. If "Point Id" has not been entered, the function is not available.

Exit the program.

Search

 Bearing-bearing coordinates S1 and S2 (E, N)

Given

- point 1 (E, N), direction (magnetic bearing or azimuth)
- point 2 (E, N), radius
- Station coordinates and orientation need to have been set correctly before the coordinates of point 1 (and/or 2) can be determined by measurement.

Call up the function "Bearing-Distance" from the menu "INTERSECTIONS".

Measuring the first point (or circle centre point).

Manual entering of the first point (or circle centre point).

Bearing-Distance Intersection, continued

F5 ۲

Search and display the coordinates of the point found

in the active data job.

SHIFT	● F6	Exit the program.
-------	------	-------------------

If "Bearing" is selected in the configuration for "Direc. Type:", then the following dialog box appears:

COGO \ Bea	iring-D	istance		
Direction	from	1st po	oint	
Quadrant	:		1	
NorthEast		0°00	'00''	
Offset	:		0.000	m
CONT TNV			RCALL	
			MODIF	QUIT
	F2	F3 F4	MODIF	

Quadrant

Enter quadrant:

- 1 = Northeast
- 2 = Southeast
- 3 =Southwest
- 4 = Northwest

NorthEast

Enter magnetic bearing If "Azimuth" is selected in the configuration during "Direc. Type:", then the azimuth of the straight line can be entered.

Offset

Entering parallel displacement. Only active if "YES" is entered in the configuration during "Offset:" Left = negative parallel offset Right = positive parallel offset

Accept displayed values.

Determining the direction by means of the function "Polar calculation" (refer to chapter "Inverse").

Bearing-Distance Intersection, continued

INPUT Enter bearing, F5 \odot mangnetic bearing resp. azimuth (if "Azimuth" is selected in the configuration for "Direc. Type:" RCALL Call up of a direction which has been previously stored using the function "Polar calculation".

Changing the direction F5 (as dialog box "Modify Bearing", resp. "Modify Azimuth")

SHIFT F6 ۲

Exit the program.

Enter distance from second point:

Horiz.Dist. Entering radius

Accept displayed values.

Determining the radius by means of the function "Polar calculation" (refer to chapter "Inverse").

INPUT Entering radius RCALL Call up of a radius which has been previously stored using the function "Polar calculation".

Exit the program.

The following dialog box shows the result of the bearing-distance intersection:

Bearing-Distance Intersection, continued

Distance-Distance Intersection

Point Id

Entering point number of the bearingbearing

East

Display of east coordinate

North

Display of north coordinate

Elevation

Entering height (optional)

Return to "Intersections".

Changing between both F2 solutions.

 \odot

The following results have been stored in the active measurement data file:

- Station Point Number WI 11
- Easting coordinate WI 81
- WI 82 Northing coordinate
- WI 83 Elevation (optional)

If "Point Id" has not been entered, the function is not available.

Call up the program F5 "Stakeout"

The program "Stakeout" assumes that the instrument is set and oriented to a known point. If "Point Id" has not been entered, the function is not available.

SHIFT

Exit the program.

Search

 Bearing-bearing coordinates S1 and S2 (E, N)

Given

- point 1 (E, N), radius 1
- point 2 (E, N), radius 2

Station coordinates and orientation need to have been set correctly before the coordinates of point 1 and/or 2 can be determined by measurement.

Distance-Distance Intersection. continued

Call up the function "Distance-Distance" from the menu

"Intersections".

F1	Search for the coordinates of
۲	the first circle centre point
(secoi	nd circle centre point) in the
datajo	b.

Measuring the first circle centre point (2nd circle centre point).

Manual entering of the first circle centre point (2nd circle centre point).

Search and display the coordinates of the point found in the active data job.

SHIFT F6 0

Exit the program.

Enter distance from points:

Horiz.Dist.

Entering distance from first point (2nd point)

Accept displayed values.

Determining the radius by F2 means of the function "Polar calculation" (refer to chapter "Inverse").

Distance-Distance Intersection, continued

F5 INPUT Entering radius RCALL Call up of a radius which has been previously stored using the function "**Polar calculation**".

Changing the direction (as dialog box "Modify

Distance").

SHIFT •

Exit the program.

The following dialog box shows the result of the distance/distance intersection:

Po Ea No E3	GO\ oint ist orth leva	Die Id tior	s t-D : :	ist	Resu	1ts 0. 0.	000 000	m m	MC
	ONT	OTHE	R S F2	TOR	3 -3	F4	TAKE	 QU	F6

Point Id

Entering point number of the bearingbearing

East

Display of east coordinate

North

Display of north coordinate

Elevation Entering height (optional)

Return to "Intersections".

Changing between both solutions

The following results have

been stored in the active

measurement data file:

WI 11 Station Point Number

- WI 81 Easting coordinate
- WI 82 Northing coordinate

WI 83 Elevation (optional)

If "Point Id" has not been entered, the function is not available.

Call up the program "Stakeout".

The program "Stakeout" assumes that the instrument is set and oriented to a known point. If "Point Id" has not been entered, the function is not available.

Intersection by Points

Call up the function "Intersection • by Points" from the menu "Intersections".

Manually enter the point coordinates.

Search for and display the coordinates of the point in the active data job.

Exit the program.

Search

Coordinates of intersection (E, N)

Given

- Point 1 (E,N), point 2 (E,N)
- Point 3 (E,N), point 4 (E,N)

Search for the coordinates of the 1st point of the first line (and 2nd point, as well as points defining second line) in the active data job.

Determine the point by measurement.

Intersection by Points, continued

The following dialog shows the results of an Intersection by Points:

Point Id

Enter point id of the intersection point.

East

Displays east coordinate

North Displays north coordinate

Elev.

Enter point elevation (optional).

Return to "Intersections" dialog.

Store the following results in F3 \odot the active measurement data

file:

- WI 11 Station point number
- Easting coordinate WI 81
- Northing coordinate WI 82
- Elevation (optional) WI 83

If "Point Id" has not been entered the function is not executable.

Call up the program F5 "Stakeout".

"Stakeout" assumes that the instrument is set and oriented to a known point.

If "Point Id" has not been entered the function is not executable.

Exit the program.

Offsets

Call up the function "Offsets" in the "COGO MENU"

Distance-Offset

Search

- Difference in length/abscissa (Horiz.Dist)
- Lateral deviation/ordinate (Offset)
- Base point coordinates (E, N) ٠

Given

- Baseline Start Point 1 (E, N),
- Baseline End Point 2 (E, N),
- lateral point 3 (E, N) ٠

Station coordinates and orientation need to have been set correctly before the coordinates of point 1 resp. 2 and/or point 3 can be determined by measurement.

Explanation of the polarity rule of Horiz, Dist, and Offset. During entering, the polarity is based on the straight line $1 \rightarrow 2$.

- + Offset Parallel displacement to the right
- Offset Parallel displacement to the left
- + Horiz.Dist. **Displacement from** basis point 1 in the direction of basis point 2
- Horiz.Dist. **Displacement from** basis point 1 in the opposite direction to basis point 2

Call up the function "Distance-۲ Offset" from the menu "Offsets".

	COG Dat Sea Poi SEA	0\ a . rcl nt] RC	Ba Job n fo Id MEA	se1 : or: :	ine F INP	St ILE Pc	art 02 0in	Pt .GS tId	• + E + 5	N 8		MC	
SHIFT											QU	IT	
	۲	F1	۲	F2	۲	F3	۲	F4	۲	F5	۲	F6	

Search for the coordinates of \odot baseline start point resp. the baseline end point (or the lateral point) in the data job.

Measuring the baseline start F2 point resp. the baseline end point (or the lateral point).

Distance-Offset. continued

Manual entering of the F3 ۲ baseline start point resp. the baseline end point (or the lateral point).

Search and display the coordinates of the point found in the active data job.

Exit the program.

esults:			
COGO	Offset	Results	– D
Point Id	:		
East	:	0.000 1	n
North	:	0.000	n
Elevation	1:		
Distance	:	0.000	n
Offset	:	0.000 1	n
CONT NEW	STORE	STAKE	
			QUIT
F1	F2 F	3 F4 F5	• F6

The following dialog box shows the

Point Id

Entering point number of the base point

East

Display of east coordinate

North

Display of north coordinate

Elevation

Entering height (optional)

Distance

Display difference in length/abscissa (Horiz. Dist.)

Offset

Display lateral deviation/ordinate (Offset)

Return to the menu "Offsets".

Entering the new lateral point with reference to the already existing basis line.

The following results have been stored in the active

measurement data file:

WI 11 Station Point Number

WI 81 Easting coordinate

WI 82 Northing coordinate

WI 83 Elevation (optional)

If "Point Id" has not been entered, the function is not available.

Distance-Offset, continued

Call up the program F5 ۲ "Stakeout". The program "Stakeout" assumes that the instrument is set and oriented to a known point. If "Point Id" has not been entered, the function is not available.

Exit the program.

Search

Lateral point 3 coordinates (E, N)

Given

- Baseline Start Point 1 (E, N),
- Baseline End Point 2 (E, N),
- Difference in length/abscissa (Horiz, Dist.)
- Lateral deviation/ordinate (Offset)

Station coordinates and orientation need to have been set correctly before the coordinates of point 1 resp. point 2 can be determined by measurement.

Explanation of the polarity rule of Horiz. Dist. and Offset During entering, the polarity is based on the straight line $1 \rightarrow 2$.

+ Offset Parallel displacement to the right

 Offset Parallel displacement to the left

- + Horiz. Dist. Displacement from basis point 1 in the direction of basis point 2
- Horiz. Dist. Displacement from basis point 1 in the opposite direction to basis point 2

Orthogonal point calculation, continued

Call up the function "Set Point by Dist-Offset" in the menu

"Offsets".

	COGO	Ba	selin	e Sta	art Pt		
	Sear	Job ch fe	: or:	PILE	intId	+E+N	•
	SEARC	tid MEA	: S IN	IPUT		58 VIEW	
SHIFT							QUIT
•	• F	1	F2	F3	● F4	• F5	• F6

Search for the coordinates of F1 baseline start point (or the baseline end point) in the data job.

Measuring the baseline start point (or the baseline end point).

Manual entering of the baseline start point (or the baseline end point).

۲

Search and display the F5 coordinates of the point found in the active data job.

SHIFT F6

Exit the program.

Enter distance analog baseline (Horiz. Dist.):

COGO Dist	COGO\ Distance from Start Distance along baseline									
Horz	Dist.:	0	RCALL	m						
	-1 F2	F3 F4	MODIF F5	QUIT						

Horz.Dist.

Enter distance along baseline (Horiz. Dist.)

Accept displayed values

Determining the distance F2 ۲ along baseline (Horiz. Dist.) by means of the function "Polar calculation" (refer to chapter "Inverse").

INPUT Entering distance along baseline

RCALL Call up of a distance along baseline which has been previously stored using the function "Polar calculation".

Changing the direction (as dialog box "Modify

Distance").

Exit the program.

Orthogonal point calculation, continued

Enter lateral deviation/distance (Offset):

INPUT Entering lateral F5 ۲ deviation/distance RCALL Call up of a lateral deviation/distance which has been previously stored using the function "Polar calculation".

SHIFT

Changing the direction (as dialog box "Modify

Distance").

Exit the program.

Horz.Dist.

Enter lateral deviation/distance (Offset)

Accept displayed values.

Determining the lateral F2 deviation/distance (Offset) by means of the function "Polar calculation" (refer to chapter "Inverse").

The following dialog box shows the results of the orthogonal point calculation:

Point Id Entering point number of the lateral point

East Display of east coordinate

North Display of north coordinate

Elevation Entering height (optional)

Orthogonal point calculation, continued

Three Point Arc

 \bigcirc

۲

Return to the menu "Offsets".

The following results have F3 been stored in the active

measurement data file:

- WI 11 Station Point Number
- WI 81 Easting coordinate
- WI 82 Northing coordinate
- WI 83 Elevation (optional)

If "Point Id" has not been entered, the function is not available.

F5 \odot

Call up the program "Stakeout".

The program "Stakeout" assumes that the instrument is set and oriented to a known point. If "Point Id" has not been entered, the function is not available.

Search

- Circle centre coordinates (E. N).
- Radius

Given

- Arc point 1 (E, N),
- Arc point 2 (E, N),
- Arc point 3 (E, N)

Station coordinates and orientation need to have been set correctly before the coordinates of point 1, 2 and/or point 3 can be determined by measurement.

Call up the function "Three Point Arc" from the "COGO MENU"

\int	COGO \	Fi	rst Pi	t on A	Arc		
	Data	Job	: 1	FILEO	2.GS	I A:	
	Sear Point	ch fo tId	or: :	Poi	ntId	+E+N 58	
	SEARC	MEA				VIEW	
SHIFT	_		50	50	= (50
	● F	1	+2	+3	● F4	• F5	● F6

Search for the coordinates of F1 the first resp. the second resp. the third arc point in the data job.

Three Point Arc. continued

Measuring the first resp. the second resp. the third arc

point.

Manual entering of the first resp. the second resp. the

third arc point.

Search and display the coordinates of the point found in the active data job.

F6

Exit the program

The following dialog box shows the results of the calculation:

Point Id

Entering point number of the circle centre

East

Display of east coordinate

North

Display of north coordinate

Elevation

Entering height (optional)

Radius Display of radius arc

Return to the "COGO MENU".

The following results have been stored in the active measurement data file:

> WI 11 Station Point Number

WI 81 Easting coordinate

Northing coordinate WI 82

Elevation (optional) WI 83

If "Point Id" has not been entered, the function is not available.

The program "Stakeout" assumes that the instrument is set and oriented to a known point. If "Point Id" has not been entered, the function is not available.

Exit the program.

Road + File Editor

Introduction

This manual describes the program "ROAD+ FILE EDITOR" of theLeica Geosystems TPS1100 Professional series.

This program is used to view and edit existing project files for the program "**Road+**" or to create new project files.

Road+ File Editor automatically applies the required file name prefixes and extensions for Road+ project files.

You may create a new Coordinate Data File, or add data to an existing one with Road+ File Editor.

1. Horizontal Aligi File Name:	nment File ALN?????.GSI
2. Vertical Alignm File Name:	ent File PRF????.GSI
3. Template File File Name:	CRS????.GSI
4. Station Equation File Name:	on File EQN?????.GSI
5. Cross-section / File Name:	Assignment File STA????.GSI
6. Coordinate Dat File Name:	ta File ???????.GSI
You may replace the first of the second seco	he question marks cample file names mitted file name

Road+ File Editor may be used to create project data files for Road+, or to edit project data files that have been created by some other program like the Windows application RoadEd, available from Leica Geosystems.

The file editing options available in Road+ File Editor vary according to the type of file being edited:

character.

Coordinate Data Files

You may not delete records from a Coordinate Data File, nor may you insert new records between existing records. Only the Point Id may be changed in existing records. You may add Code blocks, Point Coordinate and/or Station Coordinate Data records at only the end of the file. You may delete, insert and/or edit all Road+ horizontal alignment element types with Road+ File Editor. Road+ horizontal alignment element types are:

- Tangents;
- Circular Curves;
- Clothoid transitions (Tangent to circular curve, circular curve to tangent and between circular curves), and;
- End of Positioning

You must use the following sign convention to describe the direction of curvature for non-tangent horizontal alignment elements:

- For right hand curves (the center of curvature is to the right of the horizontal alignment) the radius and transition parameters are positive values.
- For left hand curves (the center of curvature is to the left of the horizontal alignment) the radius and transition parameters are negative values.

Vertical Alignment

Cross Sections

You may delete, insert and/or edit all Road+ vertical alignment element types with Road+ File Editor. Road+ vertical alignment element types are:

- Tangents;
- · Circular Curves;
- Parabolas, and;
- End of Positioning

You must use the following sign convention to describe the direction of curvature for non-tangent vertical alignment elements:

- For "sag" or "dip" curves (the center of curvature is above the vertical alignment) the radius and parabola parameters are positive values.
- For "crest" curves (the center of curvature is below the vertical alignment) the radius and parabola parameters are negative values.

You may insert new Cross Sections and delete and/or edit existing Cross Sections with Road+ File Editor. Cross Sections are defined by a series of straight line (tangent) elements. The elements are defined by the horizontal offsets and vertical height differences, from the location of the horizontal and vertical alignments, of the end points of the elements.

You must use the following sign convention to describe the horizontal offsets and vertical height differences of the end points of the elements:

- If the point is to the left of the horizontal alignment, the horizontal offset is negative.
- If the point is to the right of the horizontal alignment, the horizontal offset is positive.

- If the point is below the vertical alignment, the vertical height difference is negative.
- If the point is above the vertical alignment, the vertical height difference is positive.

Station Equations

You may insert new Station Equations and delete and/or edit existing Station Equations with Road+ File Editor.

Station Equations are identified by a number, the Ahead Station and the Back Station. "Gap" and "Overlap" station equations are supported by Road+ and Road+ File Editor.

Gap Equations

In this Gap Equation example, the Ahead Station is 5+00 and the Back Station is 3+00.

Overlap Equations

In this Overlap Equation example, the Ahead Station is 1+00 and the Back Station is 3+00.

Cross Section Assignments

You may insert new Cross Section Assignments and delete and/or edit existing Cross Section Assignments with Road+ File Editor. Cross Section Assignments define which Cross Section controls the shape of the project at which station. You may assign a Cross Section to any portion of an alignment by entering the starting and ending stations for which the Cross Section controls the shape of the project. Abrupt and tapered transitions between Cross Sections are possible.

Abrupt Transitions

Specify the ending station of the first Cross Section. Then, specify the beginning station of the second Cross Section the smallest possible station increment ahead (typically 0.001 ft. or m.)

Cross Section Assignments, continued

Open file

Tapered Transitions

Specify the ending station of the first Cross Section equal to the station at the beginning of the transition. Then, specify the beginning station of the second Cross Section equal to the station at the end of the transition. The transition may change the width and/or the shape (i.e. superelevation) of the project.

The Cross Sections at both ends of the transition must contain exactly the same number of elements. Start program "FILE EDITOR" from the "MAIN MENU: PROGRAMS" dialog.

Path:

The PC Card in your TPS1100 Professional Series Instrument is the A:\ drive. Select any existing directory on the card to create new Road+ files, or select any existing directory containing existing files that you wish to edit.

File Type:

Select the type of file you wish to create or edit with Road+ File Editor.

Coordinate

Refer to the chapter "Coordinate Data files", page 168, in this manual for further details.

Horiz. Align

Refer to the chapter "Horizontal Alignment Files", page 173, in this manual for further details.

Vert. Align

Refer to the chapter "Vertical Alignment Files", page 178, in this manual for further details.

Cross Section

Refer to the chapter "Cross Sections Files", page 184, in this manual for further details.

Open file, continued

Coordinate Data Files

Sta. Eqn.

Refer to the chapter "Station Equations Files", page 186, in this manual for further details.

CRS Assignmnt

Refer to the chapter "Cross Section Assignment Files", page 188. in this manual for further details.

File Name:

After selecting the type of file you wish to work with, you must select an existing file to edit, or press "CREAT" to create a new file of the type you have selected.

Press to view and/or edit the F1 existing file you have selected. The first record of the file will be displayed.

When you see a message that Road+ File Editor failed to read an existing file, and that file was created manually or with third party software, it usually means there is a problem with the GSI formatting of the file.

Press to create a new file of F2 the type you have selected. You will specify the name of the file on the next dialog.

Press to see the date and Version number of your Road+ File Editor.

Press to Quit Road+ File Editor. This option

is available on nearly every dialog within Road+ File Editor.

New Coordinate File

You will see this dialog if you selected File Type "Coordinate" and pressed "CREAT" on the previous dialog. You must specify a name for the new file. You may specify any DOS-legal file name. Road+ File Editor will apply the necessary extension for you automatically.

	REdi File File Deci	Typ Nam mals	Cro e : e : :	eate	File Coo FIL	rdi E02	nat .GS	e I 3		MC
	CONT									
SHIFT	-	-1	E 2		-2	F 4		E E	QU	
	۲	'	12	۲	ິ 💿	г4	۲	-5	۲	FO

New Coordinate File, continued

File Type

Displays the type of file that is being created.

File Name

Input any DOS-legal file name.

Decimals

Select the number of decimal places to be used in this file.

Press to create the new file and continue to the Insert Record dialog. (*Go to Dialog "Insert Record"*.)

Insert Point Coordinates

You will see this dialog if you selected "Insert Point Coordinates" on the previous dialog. The scrollbar at the top of this dialog graphically shows your position in the current file. The numbers to the right of the scrollbar show the number of the current record / the total number of records in the current file.

Poi Eas Nor Ele	it Int Id It It Vatio	View : : on :	/Edi	t File 23 1 2 1 2	3/23 50 .500 .000 .700	
IN	S DO	NE <		>	IMPOR	
SHIFT			<<-	->>	SEARC	QUIT
	F1	F2	F3	• F4	_ F5	5 F6

Point Id

You may edit the Point Identifier offered here, or press Enter to accept it and move to the next input field. This is the only field that may be edited in existing records.

East

The Easting or X ordinate of the point you wish to create. You may edit this value only when creating a new point.

North

The Northing or Y ordinate of the point you wish to crate. You may edit this value only when creating a new point.

Elev

The Elevation or Z ordinate of the point you wish to create. You may edit this value only when creating a new point.

Insert Point Coordinates, continued

Insert Station Coordinates

Press this key when you have \odot completed the edits of the current record and are ready to insert a new record. New records will always be inserted at the end of a Coordinate Data File.

Press this key when you have completed all edits in the current file.

F3 Press this key to display the record before the currently displayed record in this file. This key label will not be displayed if the

current record is the first record in the file.

Press this key to display the record after the currently displayed record in this file. This key

label will not be displayed if the current record is the last record in the file

Press this key to import the F5 coordinates of a point in this or another file. This key label will not be displayed if the current record is a Code record.

Press this key combination to display

the first record in this file

SHIFT

۲

Press this key

combination to display the last record in this file.

Press this key

combination to search for a particular record in this file. (Go to Dialog "Search")

You will see this dialog if you selected "Insert Station Coordinates" on the previous dialog. The scrollbar at the top of this dialog graphically shows your position in the current file. The numbers to the right of the scrollbar show the number of the current record / the total number of records in the current file.

	REdi Poir East Nort	lt\ nt t th vat	Id ion	Vie	w/Edi	t Fi	.le 23/ 1.5 2.0 1.7	23 50 00 00	m m m	MC
	INS		DONE		<	>	IMF	POR		
SHIFT]	F1	•	F2	F3	•>>	F4	F5	QU	F6

Point Id

You may edit the Point Identifier offered here, or press Enter to accept it and move to the next input field. This is the only field that may be edited in existing records.

East

The Easting or X ordinate of the station you wish to create. You may edit this value only when creating a new station.

North

The Northing or Y ordinate of the station you wish to crate. You may edit this value only when creating a new station.

Elev

The Elevation or 7 ordinate of the station you wish to create. You may edit this value only when creating a new station

Press this key when you have completed the edits of the

current record and are ready to insert a new record. New records will always be inserted at the end of a Coordinate Data File

Press this key when you have completed all edits in the current file.

F3 Press this key to display the record before the currently displayed record in this file. This key label will not be displayed if the current record is the first record in the file.

F4

Press this key to display the record after the currently displayed record in this file. This key label will not be displayed if the current record is the last record in the file.

Press this key to import the F5 coordinates of a point in this or another file. This key label will not be displayed if the current record is a

Code record.

Press this key

combination to display

the first record in this file.

F3

SHIFT	E4
۲	• ·

Press this key

combination to display

the last record in this file.

Press this key

combination to search

for a particular record in this file. (Go to Dialog "Search")

Insert Code Block

You will see this dialog if you selected "Insert Code Block" on the previous dialog.

REdit	1	View/	Edit Fi	le 🔽	4 9
				2/3	
Code		:		1	
Info	1	:	+000	00000	
Info	2	:	+000	00000	
Info	3	:	+000	000000	
Info	4	:	+000	00000	
TNS	DO				
INS					
Info	5		+000	00000	
Info	6	:	+000	000000	
Info	7	:	+000	000000	
11110	'	•	+000	00000	
FT		<	<>>	SEARC	QUIT
	4	F 0	F 0 F		50
E F		FZ	F3 F	-45	-6

Code

Input the Code you wish to enter.

Info1 - 7

Input the Info words you wish to enter.

Press this key when you have completed the edits of the

Press this key when you have

completed all edits in the

current record and are ready to insert a new record. New records will always be inserted at the end of a Coordinate Data File

F2 current file.

Press this key to display the record before the currently displayed record in this file. This key label will not be displayed if the current record is the first record in the file

F4

Press this key to display the record after the currently displayed record in this file. This key label will not be displayed if the current record is the last record in the file

Press this key combination to display

the first record in this file.

F3

SHIFT	F4	
۲		

Press this key combination to display

the last record in this file.

Press this key combination to search

for a particular record in this file. (Go to Dialog "Search")

Search

You will see this dialog if you selected "SEARC" on the previous dialog.

Press this key to search for the first occurrence of the input Point Id or Code.

If the specified Point Id or Code is found, you will see the record containing it.

If the specified Point Id or Code is not found, you will see a message. After the message, you will see the current record again.

New Horizontal Alignment File

Horizontal Alignment Files

You will see this dialog if you selected File Type "Horiz. Align" and pressed "CREAT" on the previous dialog.

Direction

Select the direction you wish to search from the current record. Forward searches toward the end of the file, Backward searches toward the beginning of the file.

Stat/Templ

Input the Point Id or Code for which you wish to search.

File Type

Displays the type of file that is being created.

File Name

Input any 5 character DOS-legal file name.

Decimals

Select the number of decimal places to be used in this file.

F1

Press to create the new file and continue to the Header Record dialog. (Go to Dialog "View / Edit Header Record".)

You will see this dialog if you created a new or selected an existing Horizontal Alignment File.

	REdi Job File File	Id ID Typ	Vie : e :	ew/Ed:	IT FIL J HZA STA	e OB_II LIGNI Coori	D M D	
	INS	DOI	NE					
SHIFT	1			<<-	->>	SEAR		UIT
۰	۰F	1	F2	• F3	• F	4	F5 (F 6

Job Id

Header Record

You may edit the Job Identifier offered here, or accept the default offered. The Job Id is used by Road+ to determine which project data files are likely to be associated together.

File Id

The File Id of a Horizontal Alignment File is "HZALIGNM" and may not be changed.

File Type

The File Type of a Horizontal Alignment File is "STACOORD" and may not be changed.

Press this key when you are ready to insert a new horizontal alignment element into the file. New records will always be inserted after the currently displayed record in a Horizontal Alignment File.

Press this key when you have completed all edits in the current file.

Press this key to display the F3 \bigcirc record before the currently displayed record in this file. This key label will not be displayed if the current record is the first record in the file.
Header Record. continued

Press this key to display the F4 \odot record after the currently displayed record in this file. This key label will not be displayed if the current record is the last record in the file.

Press this key

combination to search for a particular record in this file. (Go to Dialog "Search")

Insert Tangent

You will see this dialog if you selected "Insert Tangent" on the Insert Record dialog in a Horizontal Alignment File.

Station

Input the Station or Chainage at the beginning of the element.

Ele Type Straight

Press this key to import the coordinates of a point in another file.

Press this key combination to delete

the currently displayed record in this file. This is not available if the Header Record is displayed.

Press this key F3 combination to display

the first record in this file.

the last record in this file

Template

Input the name of the Cross Section vou wish to associate with this Horizontal Alignment element. This may be "NONE" if you are using a Cross Section Assignment File as a part of this Road+ project, or if this Road+ project does not include Cross Sections.

East

The Easting or X ordinate at the beginning of the element.

North

The Northing or Y ordinate at the beginning of the element.

Press this key when you have

completed the edits of the current record and are ready to insert a new record. New records will always be inserted after the currently displayed record in a Horizontal Alianment File.

Press this key when you have completed all edits in the current file.

- Press this key to display the F3 record before the currently displayed record in this file. This key label will not be displayed if the current record is the first record in the file.
- Press this key to display the F4 record after the currently displayed record in this file. This key label will not be displayed if the current record is the last record in the file.

Press this key to import the coordinates of a point in another file.

SHIFT	F2
۲	۲

Press this key combination to delete

the currently displayed record in this file. This is not available if the Header Record is displayed.

	 	_
SHIFT		F:
۲	۲	

Press this key

combination to display

the first record in this file.

SHIFT	F4
۲	\odot

Press this key combination to display the last record in this file.

SHIFT F5 Press this key combination to search

for a particular record in this file. (Go to Dialog "Search")

Insert Circular Curve

You will see this dialog if you selected "Insert Circular Curve" on the Insert Record dialog in a Horizontal Alignment File.

Station

Input the Station or Chainage at the beginning of the element.

Ele Type

Curve

Radius

Input the Radius of the Circular Curve.

Template

Input the name of the Cross Section vou wish to associate with this Horizontal Alignment element.

East

The Easting or X ordinate at the beginning of the element.

North

The Northing or Y ordinate at the beginning of the element.

Press this key when you have completed the edits of the current record and are ready to insert a new record. New records will always be inserted after the currently displayed record in a Horizontal Alignment File.

Press this key when you have completed all edits in the current file.

Press this key to display the F3 record before the currently displayed record in this file. This key label will not be displayed if the current record is the first record in the file.

Press this key to display the F4 record after the currently displayed record in this file. This key label will not be displayed if the current record is the last record in the file.

Press this key to import the F5 \odot coordinates of a point in another file

Insert Circular Curve, continued

Search

F2 Press this key combination to delete the currently displayed record in this file. This is not available if the Header Record is displayed.

Press this key combination to display

the first record in this file.

Press this key combination to display

the last record in this file.

F5

Press this key

combination to search for a particular record in this file. (*Go to Dialog "Search"*)

You will see this dialog if you selected "SEARC" on the previous dialog.

Direction

Select the direction you wish to search from the current record.

Station

Input the Station for which you wish to search.

Press this key to search for the input Station.

New Vertical Alianment File

Vertical Alignments

You will see this dialog if you selected File Type "Vert. Align" and pressed "CREAT" on the previous dialog.

File Type

Displays the type of file that is being created.

File Name

Input any 5 character DOS-legal file name.

Decimals

Select the number of decimal places to be used in this file.

Press to create the new file F1 and continue to the Header Record dialog. (Go to Dialog "View / Edit Header Record".)

Header Record

You will see this dialog if you created a new or selected an existing Vertical Alignment File.

Job Id

You may edit the Job Identifier offered here, or accept the default offered.

File Id

The File Id of a Vertical Alignment File is "VALIGNM" and may not be changed.

File Type

The File Type of a Vertical Alignment File is "STACOORD" and may not be changed.

Press this key when you are F1 ready to insert a new vertical alignment element into the file. New records will always be inserted after the currently displayed record in a Vertical Alignment File.

۲	

Press this key when you have 2 completed all edits in the current file.

Press this key to display the F3 \odot record before the currently displayed record in this file. This key label will not be displayed if the current record is the first record in the file

Press this key to display the F4 record after the currently displayed record in this file. This key label will not be displayed if the current record is the last record in the file.

Header Record. continued

Insert Tangent

Press this key to import the elevation of a point in another

file.

Press this key F2 combination to delete

the currently displayed record in this file. This is not available if the Header Record is displayed.

Press this key F3 combination to display

the first record in this file.

SHIFT

Press this key F4

combination to display the last record in this file.

Press this key F5 combination to search

for a particular record in this file. (Go to Dialog "Search")

You will see this dialog if you selected "Insert Tangent" on the Insert Record dialog in a Vertical Alignment File. A Tangent is a straight element in an alignment.

	REdi Stat Ele Elev	t\ tion Typ vati	V: e on	iew/	Edi	St	0 ra 0	2 .00 igh .00	[] / 0 t 0	2 m m	MC
U	INS	D	ONE	<	-			IMPO	DR		
SHIFT)EL	<	<-	->>		SEAF	RC	QU	IT
	۲	F1	F2	2 •	F3	۲	F4	۲	F5	۲	F6

Station

Input the Station or Chainage at the beginning of the element.

Ele Type

Straight

Elevation

The Elevation or Z ordinate at the beginning of the element.

Press this key when you have **F**1 completed the edits of the current record and are ready to insert a new record. New records will always be inserted after the currently displayed record in a Vertical Alignment File.

Press this key when you have F2 completed all edits in the current file.

Press this key to display the record before the currently displayed record in this file. This key label will not be displayed if the current record is the first record in the file.

file.

Press this key to display the record after the currently displayed record in this file. This key label will not be displayed if the current record is the last record in the

Insert Tangent, continued

Insert Circular Curve

Press this key to import the elevation of a point in another

file.

F2 Press this key combination to delete

the currently displayed record in this file. This is not available if the Header Record is displayed.

F3 Press this key combination to display

the first record in this file.

Press this key combination to display

the last record in this file.

F5 Press this key combination to search

for a particular record in this file. (*Go to Dialog "Search"*)

You will see this dialog if you selected "Insert Circular Curve" on the Insert Record dialog in a Vertical Alignment File. A Circular Curve is a curve of constant radius in the alignment.

Station

Input the Station or Chainage at the beginning of the element.

Ele Type Curve

Radius

Input the Radius of the Circular Curve.

Elevation

The Elevation or Z ordinate at the beginning of the element.

Insert Parabola

You will see this dialog if you selected "Insert Parabola" on the Insert Record dialog in a Vertical Alignment File.

Station

Input the Station or Chainage at the beginning of the element.

Ele Type Parabola

Parameter

Input the Parameter of the Parabola ("p").

For "sag" or "dip" curves (the center of curvature is above the vertical alignment) the Parameter is a positive value.

For "crest" curves (the center of curvature is below the vertical alignment) the Parameter is a negative value.

The "p" parameter is the reciprocal of the rate of change of slope in the vertical curve:

$$p = L / (G_{OUT} - G_{IN})$$

or

$$p = (Y_1 - Y_s)^2 / 2(X_1 - X_s)$$

Where

- G_{OUT} = the slope of the vertical alignment at the end of the vertical curve, as a decimal fraction (not percent);
- G_{IN} = the slope of the vertical alignment at the beginning of the vertical curve as a decimal fraction (not percent), and;
 - the horizontal distance from the beginning to the end of the vertical curve.

and:

Y,

Y,

Χ,

X

L

- The elevation above datum of any point on the vertical curve;
- The elevation above datum at the low or high point of the vertical curve;
- The station or chainage of any point on the vertical curve;
- The station or chainage at the low or high point of the vertical curve;

188

Insert Parabola, continued

The general equation for a parabola is:

 $Y = aX^2 + bX + c$

When the parabola describes a vertical curve in an alignment:

- Y = The elevation above datum of a point on the vertical curve;
- X = The horizontal distance from the beginning of the vertical curve;
- a = One half of the rate of change of slope in the vertical curve;
- b = The slope of the vertical alignment, as a decimal fraction (not percent), at the beginning of the vertical curve, and;
- c = The elevation above datum at the beginning of the vertical curve.

Therefore, the "p" parameter may also be expressed as:

p = ½a

Elevation

The Elevation or Z ordinate at the beginning of the element.

Search

You will see this dialog if you selected "SEARC" on the previous dialog.

Direction

Select the direction you wish to search from the current record.

Station

Input the Station for which you wish to search.

Press this key to search for the input Station.

Cross Section

New Cross Section File

You will see this dialog if you selected File Type "Cross Section" and pressed "CREAT" on the previous dialog.

ſ	REdit	\ (Crea	ate F	il	е			2
	File File Decim	Type Name als	:	Cros	5 S	Sec - 3	tion Dec.	•	
	CONT								
SHIFT	F	l F	2	F3	6	F4	F5	QUIT	

File Type

Displays the type of file that is being created.

File Name

Input any 5 character DOS-legal file name.

Decimals

Select the number of decimal places to be used in this file.

Press to create the new file and continue to the Header Record dialog. (*Go to Dialog "View / Edit Header Record"*.)

Header Record

You will see this dialog if you created a new or selected an existing Cross Section File.

Job Id

You may edit the Job Identifier offered here, or accept the default offered. The Job Id is used by Road+ to determine which project data files are likely to be associated together.

File Id

The File Id of a Cross Section File is "TEMPLATE" and may not be changed.

Insert Cross Section Point

You will see this dialog if you selected "INS" on the Header Record dialog in a Cross Section File.

The points defining a Cross Section must be entered in sequence from the farthest left to the farthest right on the Cross Section. The points defining a Cross Section should be entered consecutively to minimize file access during the operation of Road+.

	REdit Templa AHoriz SO Ht Cut/Fi Slope	Vi ate : ZDist: diff: ill :	ew/Edi	t File TEMP 0 0	2/ LATE .000 .000 FILL .000	2 m m V	MC
U	INS	DONE	<				
SHIFT		DEL	<<-	->>	SEARC	QU	IT
	• F1	• F2	• F3	● F4	F:	5	F6

Template

Input the name of the template, if you are going to create a new one or change the name of an existing one. Otherwise, this field displays the name of the Template you are currently editing.

∆HorizDist

Input the horizontal distance from the Horizontal Alignment to the point you wish to create or edit. For points to the right of the Horizontal Alignment, Δ HorizDist is a positive number. For points to the left of the Horizontal Alignment, Δ HorizDist is a negative number.

SO Ht diff

Input the vertical distance from the Vertical Alignment to the point you wish to create or edit.

For points above the Vertical Alignment, SO Ht diff is a positive number. For points below the Vertical Alignment, SO Ht diff is a negative number.

Cut/Fill

(Optional) Select a description for the current Cross Section.

- **Cut** means the hinge point is below the existing surface of the ground.
- Fill means the hinge point is above the existing surface of the ground.
- Standard means the hinge point is not specifically identified as being above or below the existing surface of the ground (the "Cut/ Fill" and "Slope" information are omitted from the file.)

Insert Cross Section Point, continued

Slope (Optional)

The ratio of the Λ Horizontal Distance to the Λ Vertical Distance from the Hinge Point to the existing ground. The slope must be assigned only to the first and last points (hinge points) in a Cross Section. All points falling between the hinge points must have a slope of zero.

If the design surface is rising toward the right, the slope is a positive value. If the design surface is falling toward the right, the slope is a negative value.

Search

You will see this dialog if you selected "SEARC" on the previous dialog.

Direction

Select the direction you wish to search from the current record.

Template

Input the Cross Section name or number for which you wish to search.

Press this key to search for the input Cross Section name or number.

Station Equations

New Station Equation File

You will see this dialog if you selected File Type "Station Equation" and pressed "CREAT" on the previous dialog.

File Type

Displays the type of file that is being created.

File Name

Input any 5 character DOS-legal file name.

Decimals

Select the number of decimal places to be used in this file.

Header Record

Insert Station Equation

Search

You will see this dialog if you created a new or selected an existing Station Equation File.

You will see this dialog if you selected "INS" on the Header Record dialog in a Station Equation File.

You will see this dialog if you selected "SEARC" on the previous dialog.

Job Id

You may edit the Job Identifier offered here, or accept the default offered. The Job Id is used by Road+ to determine which project data files are likely to be associated together.

File Id

The File Id of a Station Equation File is "STAEQTN" and may not be changed.

Sta. Eqn.

The number, starting from 1, of the equation in the Horizontal Alignment.

Ahead

The value from which the Stationing continues forward along the Horizontal Alignment.

Back

The value from which the Stationing decreases backward along the Horizontal Alignment.

Direction

Select the direction you wish to search from the current record.

Sta. Eqn.

Input the Station Equation number for which you wish to search.

193

Cross Section Assignments

Header Record

New Cross-section Assignment File

You will see this dialog if you selected File Type "CRS Assignmnt" and pressed "CREAT" on the previous dialog.

	REdit	: \	Cre	ate F	ile		
	File	Туре	• :	CRS	Assig	nmnt	
	File	Name	: :		-		
	Deci	nals	:		3	Dec. 🖲	7
	CRS I	File	:		CRSC	RSET	7
	CONT						-
C							
HIFT							QUIT
•	F	1	F2	F3	F4	F5	F6

Decimals

Select the number of decimal places to be used in this file.

CRS File

Select the Cross Section File with which this Cross-section Assignment File is associated. (The Cross Sections assigned by this file must be defined in the associated Cross Section File.) You will see this dialog if you created a new or selected an existing Station Equation File.

Job Id

You may edit the Job Identifier offered here, or accept the default offered.

File Id

The File Id of a Cross-section Assignment File is "ASSIGNMT" and may not be changed.

File Type

Displays the type of file that is being created.

File Name

Input any 5 character DOS-legal file name.

Insert Cross-section Assignment

Search

You will see this dialog if you selected "INS" on the Header Record dialog in a Cross-section Assignment File. You will see this dialog if you selected "SEARC" on the previous dialog.

REdit Search Direction : Forward V Station : Forward V SEARC Station V SHIFT CUIT • F1 • F2 • F3 • F4 • F5 • F6

Template

The name (or number) of the Cross Section to be assigned.

Station

The Station at which the assignment begins.

Direction

Select the direction you wish to search from the current record.

Station

Input the Station for which you wish to search.

Road+

Introduction

This manual describes the "ROAD+" program of the TPS1100 Professional Series.

The program uses the station and offset method to control contsruction staking of roads and other types of curvilinear projects. The program supports station equations, cross section assignment by station, cross section definition, cross section interpolation, automatic superelevation and widening, and slope staking/catch points.

Alignment Definition

An alignment consists of three basic components which are horizontal alignment, vertical alignment and cross-section template. Of these, a horizontal alignment is mandatory to use "ROAD+". All other alignment elements are optional.

"ROAD+" reads the elements of each of these components from data files that are in GSI file format. In addition, a file can be created for entering cross-section stations for specific locations such as points needed for the staking of superelevation points. If station equations are needed, "ROAD+" will read a file created for station equations and apply the appropriate corrections.

Data Files

Each of the data files "ROAD+" reads contain the necessary information specific to the component being defined. The files have unique identifiers and must be in the GSI file format:

Horizontal

Alignment File A	LN?????.0	SI
Vertical		
Alignment File Pl	RF?????.@	SSI
Template File Cl	RS?????.0	SSI
Cross-section		
Assignment File S	TA?????.0	SSI
Station		
Equation File EC	QN?????.@	SSI

The three letter prefix, ALN, PRF, CRS, STA and EQN identify the type of file and must be used when creating the data files. The ? can be any valid DOS character. The file extension GSI defines the file as a GSI file and must be used.

Data Files, continued

1. Permitted elements in the Hz- alignment		Curve In	Clothoid transition between a Curve of larger radius and a Curve	End of project	(EOP) station (chainage) and coordinates of end-		
Straight	defined by station (chainage) and coordinates of starting point		of smaller radius, defined by station (chaingage) and coordinates of starting point; and Radius of larger curve:		point , where L=length of dius of curve		
Curve	defined by station (chainage) and coordinates of starting		and Radius of smaller curve				
	point and Radius of curve (- = left- hand curve; + = right-	Curve out	Curve out Clothoid transition between a Curve of smaller radius and a		2. Permitted elements in V- alignments		
Creinel	hand curve)		Curve of larger radius, defined by station	Straight	defined by station (chainage) and height of		
Spiral	Curve, defined by station		coordinates of starting	Curra	starting point		
	coordinates of starting point; and Parameter A ¹ of spiral (negative parameter = spiral into or from left-hand curve)		Radius of smaller curve; and Radius of larger curve	Curve	(chainage) and height of starting point and radius of curve (- = crest; + = dip)		

Data Files, continued

Parabola defined by station (chainage) and height of starting point, and parameters of parabola² (- = crest; + = dip)

End of

project (EOP) station (chainage) and height of end-point of gradient

² Parabola parameter formulae:

p=(S-S₀)² / 2(H-H₀)

Where:

- S = any station (chainage) on the parabola
- S₀ = station (chainage) of the high/low point of the parabola
- H = height at any station S (above), and
- $H_0 =$ height of the high/low point of the parabola

Where:

- G_{OUT} = the slope of the vertical alignment at the end of the vertical curve, expressed as a decimal fraction (not percent);
- G_{IN} = the slope of the vertical alignment at the beginning of the vertical curve, expressed as a decimal fraction (not percent), and;
- L = the horizontal distance from the beginning to the end of the vertical curve.

OR

p = 1 / 2a,

in the general equation $Y = aX^2 + bX + c$ for a parabola as used to describe a vertical curve in an alignment. Where:

- Y = The height of a point on the vertical curve;
- X = The horizontal distance of the point from the beginning of the vertical curve;
- a = One half of the rate of change of slope in the vertical curve;
- b = The slope of the vertical alignment at the beginning of the vertical curve, and;
- c = The height above datum at the beginning of the vertical curve.

Data Files, continued

3. Permitted elements in cross sections

If both cuts and fills exist in your project, you must define cut and fill cross sections for your project.

Offset from horizontal alignment

Height difference from vertical alignment³

³ A vertical alignment is required in order to use cross sections in ROAD+.

4. Permitted elements in cross section assignments

NameThe name or number of
the cross sectionStationThe station (chainage) at
which the cross section
is to be applied

5. Permitted elements in station equations

Stationequation sequence
numberBackStationStationThe last station
(chainage) leading up to

Ahead

Station

- the equation
- The first station (chainage) continuing away from the equation

There are two methods that can be used to create the necessary Road+ input data files.

• The Windows application, RoadEd; and

Creating Data Files

• The TPS1100 Professional Series instrument program, Road+ File Editor.

If the program called "Road+ FILE EDITOR" is loaded into the theodolite, all necessary data can be entered through the keyboard of your TPS1100 Professional Series instrument.

To enter the data on the computer, a Windows application called "RoadEd" can be used. If you create the files using "RoadEd", the files must be copied to the PCMCIA card.

one telescope position only. A typical "ROAD+" session includes the

following steps:

Program Overview

1. Enter setup information for the instrument and orient.

"ROAD+" allows measurements in

- 2. Start the ROAD+ program and configure.
- 3. Select the alignment files
- 4. Select a station
- 5. Pick a point on the cross-section to stakeout, enter an offset, choose method.
- 6. Stake the point and record the data.
- 7. Choose another point on the cross-section and stake it out.
- 8. When all selected points on the cross section have been staked, enter a new station and repeat steps 5-7.

```
In the sections that follow, operation
of the program will be covered in
more detail. This will assist you to
become proficient with the "ROAD+"
program for normal everyday
operations, such as staking a project
with stations and offsets, and slope
staking.
```

Getting started

Before starting the program, enter the setup information for the location of the theodolite and orient the instrument to the reference point.

From the "MAIN MENU: PROGRAMS" display, move the highlighted cursor to the "ROAD+"

program and press 🛃 on the keyboard of the instrument. This will bring up the "Select Aln Files" dialog.

The display illustration examples contain text and values for example purposes only. The actual values you will see on the display of your instrument will be different.

Getting started, continued

SHIFT

	Road+ Aln. Horiz Vert. Cross Crs.A: Static	Se Dir Aln Sec ssig Dn E	1ect : : s: n: q:	Aln	ALN PRI CRS E(1es NOF FOF SOF (n QNO	GSI FIC FIC FIC FIC FIC			
SHIFT	E 4	CON		52		54			QU	IT
	• "	۲	F2 •	FJ	۲	F4	۲	FD	۲	FO

F2 Call up the "Configuration-Editor".

Before selecting the alignment files to use, you should enter the configuration parameters for the job. **Configuration**

SHIFT

F2 Start the

"Configuration-Editor" from the "Select Aln Files" dialog.

Road+\Dialog Begin Sta.: End Sta.: Sta. Incrm: Ht. Shift : Deflct.Tol: Sta. Tol:	Values suculd 0.000 0.000 100.000 m 0.000 m 0°00'16'' 0.010 m	
	DFLT I	NFO
Vert. Mode:	Profile/XSec ▼	

CrsIntrpl.:	0ff ▼
CrsMovemnt:	Left > Right ▼
Log File :	0ff ▼
Log FlName:	ROADPLUS.LOG
Meas Job :	FILE01.GSI 🔻
Data Job :	FILE02.GSI 🔻

Begin Sta.

Enter the beginning station (chainage) for your work area

End Sta.

Enter the ending station (chainage) for your work area

Sta. Incrm

Enter the station (chainage) interval to be used

Ht. Shift

Enter a vertical shift value if needed. The value entered will be applied to the whole alignment.

Deflct. Tol.

Enter an angle tolerance for deflection angles. Make this a small value but not 0.

Sta. Tol.

Enter a value for stationing (chainage) tolerance.

Vert. Mode

The normal mode is Profile/XSec. However, if you have installed the TPS1100 Application DTM Stake, you will see an additional option here. Profile/XSec uses a vertical alignment and cross sections to define the project in the vertical direction. DTM uses a digital terrain model to define the project in the vertical direction.

Crs Intrpl

The cross section interpolation can be switched ON or OFF. More details are described in chapter "Cross section definition".

CrsMovemnt

This function controls the movement along the cross section.

There are three choices:

- LEFT to RIGHT.
- RIGHT to LEFT and
- NONE.

The direction chosen is for display purposes only. The rodperson can go in any direction desired along the cross section.

Log file

When the log file is set to ON, staked out data can be stored in a file for printing at a later date.

Log FIName

Enter a file name for the log file. The default file name can be used. LogFIName appears only if "Log File = ON" is selected in the "Configuration".

Meas Job

Selection of the measurement iob for recording measurements.

Data Job

Selection of the data job containing the fix point coordinates (control data).

Accepts and stores F1 parameters displayed. Continues to display "SELECT ALN FILES"

Sets standard values. The values are displayed in dialog on page 195.

Displays date and version of the program.

To proceed further, you must select a horizontal alignment file. The other files are optional and are dependent on what you are staking. For instance, if you are only staking the centerline of the road, then it would not be necessary to have a vertical alignment, template, cross section assignment or station equation file. If your project requires these other files then you will need to select them here.

Select Alianment Files

All alignment files must be stored in the same directory on the memory card.

Horizontal Alignment File

Vertical Alianment File

The Horizontal Alignment file defines the plan view shape of the project centerline.

Select the horizontal alignment ◄ file. A dialog box appears with a list of all ALN????? GSI files available. Move the cursor to the file needed and press 🛃 . The "Select Aln File" display will return and the cursor will be highlighting the Vertical Alignment file.

The Vertical Alignment file defines the height of the project centerline.

Select the vertical alignment file. A dialog box appears with a list of all PRF????.GSI files available. Move the cursor to the file

needed and press 🛃 .

The "Select Aln File" display will return and the cursor will be highlighting the Cross Section file. The Cross Section file defines the cross-sectional shape of the project.

Cross Section/template File

Select the cross section file. A dialog box appears with a list of all CRS????.GSI files available. Move the cursor to the file needed

and press 🛃 .

The "Select Aln File" display will return and the cursor will be highlighting the Cross Section Assignment file.

Cross Section/template File, continued

Cross Section Definition

When defining the cross section, both a cut and fill template can be created similar to the following diagrams.

Cross section - Cut

Cross section - Fill

CL = Centerline

Cross Section Assignment File

The cross section assignment file contains the following elements:

- Cross Section name
- Controlling Chainage

Road+ treats the data in the Cross Section Assignment File in two different ways, according to the setting of the CRS Intrpl switch in the configuration routine.

When CRS Intrpl is set to OFF, a cross section assigned in this file will remain in effect until another cross section is defined. The transition between the two cross sections will be abrupt, at the station where the next cross section assignment takes effect. When the file is created you will designate the name of the template to use and the chainage to begin using the template. The next template name entered also contains a starting chainage. A third template can be assigned to begin at another chainage and so forth. For example, the file might contain the following information:

XSEC1, 0 XSEC2, 100 XSEC3, 300 XSEC1, 550

Road+ would use template XSEC1 beginning at station (chainage) 0+00 and ending at station (chainage) 1+00, XSEC2 beginning at station (chainage) 1+00 and ending at station (chainage) 3+00, XSEC3 from station (chainage), 3+00 to station (chainage) 5+50, and use XSEC1 again, beginning at station (chainage) 5+50.

Cross Section Assignment File, continued

When CRS Intrpl is set to ON, this same data would be treated differently, assuming all three cross section templates have the same number of points in them.

Road+ would start with XSEC1 at station (chainage) 0+00, and transition linearly to XSEC2 at station 1+00. Then it would transition linearly to XSEC3 at station (chainage) 3+00, and finally transition linearly back to XSEC1 at station (chainage) 5+50. If the project continues past station (chainage) 5+50, XSEC1 will be applied.

Select the cross section assignment file. A dialog box appears with a list of all STA????.GSI files available. Move the cursor to the file needed and press .

Cross Section Interpolation

Cross sections can be interpolated both along the cross section (i.e. between defined points), and between cross sections themselves. The interpolation between cross sections makes superelevation and widening possible. The following diagrams illustrate these concepts.

Interpolation along a cross section:

Interpolation between cross sections:

Cross Section Assignment File, continued

• Superelevation/Widening

Superelevation is controlled by the cross sections. Cross sections must be placed at the appropriate chainage for the beginning of superelevation, full superelevation and back to no superelevation. The STA????.GSI file contains these special locations for cross sections as well as cross section locations for widening. The diagram that follows illustrates the concept for superelevation.

Superelevation governed by cross sections:

Station Equation File

Station equations are used to adjust the alignment stationing. The most common reason for doing so is the insertion or removal of curves during the design process. Inserting or removing a curve would require recalculating the stationing of an entire alignment. Using station equations eliminates this.

Station equations can create either a gap or overlap as shown in the following diagrams.

Gap Station Equation Station Back 10+000 = Station Ahead 15+000

Station Equation File, continued

Overlap Station Equation Station Back 13+000 = Station Ahead 7+000

Select the station equation file. A dialog box appears with a list of all EQN????.GSI files available. Move the cursor to the file needed

and press 🫃.

When all files have been selected. Continues to display "Station & OFFSET". Prior to the "Station & OFFSET" display appearing, you will see a brief message about checking for errors in the selected files.

File Checkina

During the file checking process, each file is inspected for possible errors in the data format such as missing or incorrect word index. If errors are found, an error message is displayed indicating the type of error. During the inspection process, if any errors are found that would cause erroneous data to be computed and displayed, the file checking routine will be aborted. If this occurs, the file(s) containing the problem must be fixed before continuing. In addition to checking for file errors, geometrical components are checked. This includes tangent directions of adjacent elements and chord lengths of elements. Any deviations which exceed permitted tolerances are displayed such as in the following example.

F4 \odot

Selecting the "YES" option to override will cause the program to override the error and continue to check other files for possible errors. If no other errors are found the program will go to the "Station & Offset" opening display.

Selecting the "NO" option to F6 override will bring up another display that says "Continue checking alignment ?". If you choose "NO" the display will return to the "SELECT ALN FILES" menu. If you choose "YES" the program will continue to check the files. If no other errors are found the program will go to the opening "Station & Offset" display.

Stakeout Using Horizontal Offset

Preparing for the example

The most common method for staking out roads, pavement, curb & gutter etc. is to use a horizontal offset from the actual point. For instance, a four foot offset from finished back of curb (BC) is commonly used to provide cut/fill stakes for a street and curb lines. In this section of the manual, a sample project will be used to demonstrate the procedures to follow for staking a portion of the job. The project consists of a 3 m wide paved bicycle path with a curve. The project will be staked on a 0.6 m offset from the edge of pavement. The POB and PC will be staked for both sides. This project also uses a simple template. The project is designed to illustrate the application of the "ROAD+" Program . It is not intended to provide a demonstration of road design procedures.

Our bike path is about 30 m in length as illustrated here. The riding surface is 3 m wide, lying 1.5 m on each side of the centerline. From the edge of the riding surface, fill slopes extend downward at a slope of 2:1.

The vertical alignment (or profile) for the project is a simple 2% uphill slope. An assumed elevation of 30.50 is placed on the original ground at the Setup Point, and the road starts at elevation 31.1. This allows you to practice with all of the components of the "ROADPLUS" program. For the field work, we recommend a flat, open area about 25 m on a side.

The following pages contain illustrations and listings of all the data needed to run the example.

There are 3 easy steps to the example:

 Use the "RoadEd" program on your PC, or Road+ File Editor on your TPS1100 Professional Series Instrument, to enter the design information for the Horizontal Alignment, Vertical Alignment, and Templates.

A special naming convention identifies the type of file that each alignment and template are stored in. The first three letters in the file name tell "ROADPLUS" what is in the file and how to view it. The GSI extension is also required.

Horizontal Alignment:	ALN????.GSI
Vertical Alignment:	PRF?????.GSI
Templates:	CRS????.GSI

In "RoadEd", enter the following example project data. Let's call the project "EXAMPLE" and configure the units to m, 3 decimal places. Let's name the files "ALN_EX1.GSI", "PRF_EX1.GSI", and "CRS_EX1.GSI".

TPS1100 - Appl. Prog. Ref. Manual 2.2.0en

Horizontal Alignment: ALN_EX1.GSI							
Station	Element	Rad/Par	Template	E	N		
0.000	Straight	0.000	Tutor	305.000	305.000		
7.620	Curve	9.080	Tutor	305.000	312.620		
20.298	Straight	0.000	Tutor	312.502	321.562		
27.918	EOP	0.000	Tutor	320.007	322.885		

Vertical Alignment : PRF_EX1.GSI					
(Chainage	Element	Rad/Par	н	
1	0	Straight	0	31.100	
2	27.918	EOP	0	31.654	

Template: CRS_EX1.GSI

The horizontal alignment file specifies a template for each chainage. Our horizontal alignment file specifies only one template, "Tutor". You can, however, specify different templates for any chainage as you may require. We will define two templates, "Tutor" and "TypCut", in our template file. While running "ROADPLUS", you can switch templates at any time. ("TypCut" will not be used to stake out this example)

	Template	Offset	Ht. Diff.
1	Tutor	-35.000	-16.700
2	Tutor	-1.500	-0.030
3	Tutor	0.000	0.000
4	Tutor	1.500	-0.030
5	Tutor	35.000	-16.700
6	TypCut	-35.000	+16.630
7	TypCut	-1.500	-0.030
8	TypCut	0.000	0.000
9	TypCut	1.500	-0.030
10	TypCut	35.000	+16.630

- 2. Copy the alignment and template files to your PCMCIA card. Copy the files into the GSI subdirectory on your PCMCIA card. If the GSI subdirectory doesn't already exist on the PCMCIA card, you will need to create it. Place the PCMCIA card in your instrument.
- 3. Set up the instrument in your work area and stakeout the example roadway. Set the instrument coordinates to the values shown for point 1 (*see figure page 206*). Orient the instrument towards a convenient "North", and set Hz_o to zero (*see figure page 206*). Start "ROAD+" and continue reading this manual.

When the "Chainage & Offset" display first appears, only the lower portion beginning with "Station" will be visible. To view the entire display, use the green up/down arrow keys on the keyboard to scroll up to the top.

Roa Ht. Sta Sta Ele H O V O	d+\ Shi tio men ffs	ft crm n t et et		on &	Off	set 0 1 0 0	. 000 . 000 . 000 . 000 . 000) m) m) 3) m		MC
		STA	T	<51 <8	S	>	<u>51A</u>		າມ	IT
 ۲	F1	۲	F2	F:	3	F4	•	-5	۲	F6

Ht. Shift

Vertical shift applied to the whole alignment. Set this to zero in this example.

Sta. Incrm.

The station (chainage) increment set in the configuration is displayed. If desired, a new value can be entered.

Station

Enter the station (chainage) to be staked.

Element

This displays the element for the chosen station (chainage) such as POB, PC, CURVE etc.

H. Offset

Horizontal offset to apply to the current chainage. Set this to -0.6 to stake the left side and 0.6 to stake the right side of the bikeway in this example.

V Offset

Additional vertical offset to apply to the current chainage.

Press to stakeout the \odot centerline point at the specified station (chainage). Depending on your program configuration, you may see the coordinates of this centerline point, or you may go directly to the STAKEOUT program.

Allows you to take a measurement and determine the station (chainage) and offset of

that measurement. You may then use the station (chainage) of that measurement to stake out a cross section point, if you desire.

Press to change between cut and fill templates. "FillS" is shown when a cut template is active,

"CutS" when a fill template is active.

Allows you to view the active station

equations, if you specified a station equation file when you started Road+.

Allows you to "jump" directly to the Begin

Station (Chainage) specified in the configuration.

SHIFT F4 ۲ ۲

Allows you to "jump" directly to the End

Station (Chainage) specified in the configuration.

Allows you to place a note in the Log File, if

one is activated in the configuration.

Sta?

From this dialog, you may make a measurement and Road+ will calculate the station (chainage) and offset at the prism, or you may import a point and calculate the station (chainage) and offset of that point.

F1	to set the measured point into
	the Station & Offset dialog.
(Not a	vailable until after a
meas	urement has been made, or a
point i	mported.)

Select Template point and offset

to make a measurement. The normal measurement dialog

is displayed. Press **F**⁴ when you

are ready to calculate the station (chainage) and offset of a measured point. You will return to this dialog and see the Station. Element and Horizontal and Vertical offsets to the measured point.

F3 ۲

to store the results of this measurement. (Not available until after a measurement has been made.

F6 \odot

to import a point from a file, and use it to compute the station (chainage) and offset.

The first step in the procedure is to select a point on the cross section to be staked and enter the offset.

Access the cross section F2 \odot options.

Road+\	Cross S	ections		D D
		1L	C	
Station	:	0.000		
Hght.Shi	ft:	0.000	m	
Cross Se	ct:0000	000000FFIC	E ▼	
∆CL Offs	et:	-1.500	m	
∆CL HgtD	if:	-0.030	m	
CONT	СН <	CENTR>		IS
Stake Of	fs:	0,000	m	
Stake Of	fs: Ht:	0.000 Prev. Elem	m	
Stake Of S.Offset	fs: Ht:	0.000 Prev. Elem	m ▼	
Stake Of S.Offset H Offset	fs: Ht:	0.000 Prev. Elem 0.000	m ▼ m	

SHIFT ۲ F1 F2 F3 F4 F5 F6

1L

Indicates the location of the cross section point in relation to the centerline. In this example, the "1L" means the first point of the template left of centerline

С

Indicates that a cut template is active. An F would indicate that a fill template is active.

Chainage

Displays the current chainage.

Haht. Shift

Displays the vertical shift, if any, applied to the whole alignment.

Template

Displays the template name being used.

Select Template point and offset, continued

∆CL Offset

Displays the horizontal distance of the template point from centerline (– for left)

∆CL Hgt Diff

Displays the difference in elevation of the template point between the centerline and the point to be staked.

Stake Offs.

This is the offset value that will be used for setting the offset stake. If the point is left of centerline, the value entered must be a negative number.

S. Offset Ht.

This display indicates the method used in computing the elevation of the point to be staked. The three methods are "Previous Element", "Interpolated" and "Horizontal".

Offset

Horizontal offset to apply to current chainage.

Ht. Offset

Additonal vertical offset to apply to current chainage.

Activates the slope staking options

Move along the current cross section from right to left.

● F4

Move across the current cross section from left to right

Displays a plot of the template.

Select Template point and offset, continued

The first point we want to stake for the bike path is the left edge of pavement. This point is 1.5 m left of centerline so the "ACL Offset" value should be set to a -1.5 m.

Change the location to -1.5 F3 \odot m. The "ACL Ht. Diff" value will automatically change to the correct vertical difference based upon the design of the template.

The stake offset value needs to be set to a -0.600 m. The negative value is used because the point to stake is left of centerline.

To accept the value press 4.

The final step in the process is to select the method to use for computing the elevation of the offset point to be staked. The "ROAD+" program provides three methods to choose from:

Horizontal

The elevation is computed horizontally to the catch point.

Previous Element

The elevation is computed on an extension of the grade of the previous element.

Interpolated

The elevation is interpolated to intersect the design slope of the cross section.

The most common method used is the "Horizontal" method. To select this method, move the

cursor to "S. Offset Ht" and press to display the three options. Move the cursor to "Horizontal" and

press 🛃 .

This setting will remain as the current method until a different method is chosen. Therefore it is not necessary to go through the procedure every time.

F1

Accepts and stores parameters set. Continues to display "Point Coords".

Stakeout and Record point

The "POINT COORDS" dialog displays the current chainage location of the offset point to be staked. The display also shows the value for the prism pole (Refl. Height) and the Easting and Northing coordinates of the offset point and the finished grade elevation of the actual point (not the offset location).

ſ	Road+\	Point	Coords		- 0
	Station	:	0	.000	m [E]
	Refl.Ht	. :	1	.500	m
	East	:	331	.000	m
	Nort	:	335	5.000	m
	Elevati	on :	31	.000	m
	STAKE				
C					
HIFT					QUIT
۲	F1	F2	F3 F4	F5	F6

Activates the stakeout program. (*See STAKEOUT*) Record the staked out point, or "CONT" in STAKEOUT to return to ROAD+. Stakeout Next point on Cross Section

To set the offset stake for the right side of our example project:

● F5 S

Set the " Δ CL Offset" value to positive 1.500 m.

Note when you do this the position changes from "1L" to "1R". Scroll down and highlight "Stake Offs.". Change the offset value to positive 0.600 m.

Returns to the "POINT COORDS" display.

Stakeout the 0.600 m offset stake for the right side of the bike path. (*See STAKEOUT*) Record the staked out point, or "CONT" in STAKEOUT to return to ROAD+.

Stakeout and Record point, continued

For this example, the last point staked was the 0.600 m offset point for the right side. When the "Cross Sections" display appears, the "ACL Offset" changes to the next point on the cross section. The next point to stake is the 0.600 m offset for the right side at the next station.

Exits from the "Cross Sections" display and returns to the "Station & Offset"

Moves to the next station F4 (chainage) (you also may enter a new station (chainage)). The Station & Offset display will change to reflect the new station location.

Brings up the "Cross Sections" display.

In our example the last point staked was on the right side. Rather than have the rod person cross back over to the left side, it makes sense to stay on the right side and stake that position and then cross over to the left side.

To stake the catch point on the right side:

Stakeout and Record point, continued

Set the "ACL Offset" from F5 • centerline value to positive 1.500 m. The offset value should be positive 0.600 m, but should not require a change because that was the last offset value used for the previous right side point.

Access the "Point Coords" display.

Road+\	Point	Coords			0
Statio	n :		25.00	00 m	E
Refl.H	t. :		1.50	00 m	
East	:		331.00)O m	
Northi	ng :		340.50	O m	
Elevat	ion :		31.20)O m	
STAKE					
STAKE					
STAKE				QL	JIT
	E 2	E2			JIT

To stake the offset point on the right side for chainage 25+00:

Activates the stakeout F1 \odot program. Record the staked out point, or "CONT" in STAKEOUT to return to ROAD+.

	Road Star Cros ACL ACL Sta	i+\ tio ss Of Hg ke	Cr n Sec fse tDi Off:	055 : t:0 t: f: s:	Sect	200000	5.)F 1. 0.	1L .000 FICE .500 .030 .600	▼ m m	
SHIFT ®		F1	F	2	F3		4	• F5	Q	JIT F6

F3 Change the "∆CL Offset" from centerline to negative 1.5 m. Change the "Stake Offs." value to negative 0.600 m.

Access the "Point Coords" \odot display.

Access the stakeout F1 program. (See STAKEOUT) Record the staked out point, or "CONT" in STAKEOUT to return to ROAD+.

Horizontal Offset Stake Out Summary Select Alignment Files

Start "ROAD+" from the program menu.

F2 Start the "Configuration-Editor" from the "Select

Aln Files" dialog.

	Road+\	Co	onfigur	ation		
	Begin	Sta.		0	.000	Ξ
	End	Sta.		89	.270	
	Sta.	Incrm	•	10	.000	m
1	Ht. S	hift		0	.000	m
1	Deflc	t.Tol	•	0°00'	20''	
	Sta.	Tol		0	.010	m
	CONT				DEFLT	INFO
SHIFT						QUIT
	F1	L F2	2 F3	F4	F5	F6

Enter the beginning and ending station (chainage), the station (chainage) increment and so forth. Make all entries.

Returns to the "Select Aln Files" display.

Cross Secs: CRSOFFICE V	Cont	Road+ Aln. Horiz	Sel Dir : .Aln.:	ect A	In Fil	es [] GSI\ FICE		MC
		Cross	Secs:		CRSOF	FICE	•	

F6 Select the alignment files.

Place the cursor on each file type, press and pick the file from the displayed list. Select the files.

To accept the specified files and check them for errors.

A Horizontal Alignment File must be selected.

Set offset value and select point to stakeout

The "Cross Sections" options display appears.

Set offset value continued

or

negative value.

Coords".

F1

 \bigcirc

Set the "ACL

value is the distance from centerline

Move the cursor to "Template" and pick the cross section template to

use, then set the "Stake Offs." (stake

offset value). If the point is left of the

centerline, enter the offset value as a

Continues with display "Point

of the point you want to stake.

Offset" value. This

Stakeout the point

Select new chainage

The stakeout program will F1 start with the polar stakeout method being used. (See STAKEOUT)

Record the staked out point, or "CONT" in STAKEOUT to return to ROAD+.

F3	or	F4	Sele
	01	۲	(cha

 \odot

ect a new station ainage) (you also

may enter a station (chainage).

Select the point to stake out F2 and the offset.

Repeat the procedure outlined in sections "Set offset value and select point to stakeout" through "Select new chainage". Continue in this manner until all points have been staked.

Slope Staking

Slope staking involves determining a point where the cross section template meets the ground surface. This Catch Point of zero cut/fill (Catch Point) is found primarily by trial and error and a lot of computing. The following diagram illustrates the concepts of slope staking.

The slope staking routine is accessed from the "Cross Sections" display.

MC

Slope Staking, continued

Before proceeding, move the cursor to the "Template" option.

Choose the template to use for slope staking. If the displayed template is the correct one, then it will not be necessary to change it.

Start the slope stake program.

Road+\	Slope S	taking	
Station	:	2.000	
Cross Se	ct:	+000FFICE	
Xsection	:	CUT	•
∆CL Offs	et:	-0.409) m
∆XS HgtD	if:	+1.188	3 m
∆Station	:	-0.037	'm
ALL DIS	ST REC	CONT	FILLS
∆HingeOf	fs:	-0.209	m
∆HinteHg	tD:	-0.979	m
Elevatio	n:	401.612	m
-Τ ΔST	=0 STORE	I<>II REFP	T QUIT
1			
E1	F2 F	3 E4 I	E5 E6

The "STORE" and "REFPT" options are not available until after a distance is measured.

Measure to the current position of the prism pole. When the value of "∆XS Hgt Diff" and "∆Station" are zero, or close to it, the prism pole is at the catch point.

In the sample display shown, the value for " Δ XS Hgt Diff" is 1.188m. The value is positive, meaning the measurement was taken at a point that is above the cut slope. Assuming the cut slope is 1:1, the rodperson will want to move approximately 1 meter away from the centerline before making the next measurement. The value of the Δ Station is -0.037m. The value is negative, meaning the measurement was taken at a point whose station is slightly lower than the indended 2.000. The rodperson will want to move slightly up station before making the next measurement.

Slope Staking, continued

In addition, the horizontal distance from centerline is displayed which is -0.409 m for this example.

After moving to a new location, measure a distance to the prism and view the results. When the " ΔXS Hgt Diff" and "AStation" are at or near zero the catch point has been located both vertically and horizontally for the chosen chainage.

Record the staked out position.

The "SLOPE STAKING" display returns and another catch point can be staked.

SLOPE STAKING Menu Function **Kev Summarv**

Measures the distance to the target, and automatically records the data as defined by the currently set recording mask.

 \odot

Measures the distance only. and updates the display.

Records the information for F3 the current measurements.

Sets the station to the value of the last

measurement.

The "∆St=0" function is not available until a distance is measured.

F3

Stores the data to the log file.

The STORE function is not available until a distance is

measured.

SHIFT	۲	F4
	~	

Switches between face one and face two for

measurements.

After a measurement is made to the prism

pole the "REFPT" option will be available. See section "Reference Point" for a detailed discussion of this option.

Reference Point

F5

SH ● Displays additional information about how

the location of the prism pole relates to components of the cross-section. Do this after a measurement at the catch point has been made.

Road+\ Referer	nce Point
	1L 🖪 🖻
Station :	0.000
Cross Sect:	typcut
∆Station :	3.254 m
∆CatchOffs:	-0.347 m
∆CatchHgtD:	-0.389 m
ALL DIST REC	CONT
∆HingeOffs:	8.154 m
∆HingeHgtD:	-2.123 m
∆CL Offset:	9.213 m
∆CLHgtDiff:	-1.124 m
∆V fmSlope:	0.014 m
Slope :	-0.020
Elevation :	401.535 m
STOR	E I<>II QUIT

۲

1L

Indicates the location of the cross section point in relation to the centerline. In this example, the "1L" means the first point of the template left of centerline.

Station

Displays the currently specified station (chainage).

Cross Sect

Displays the currently specified template name.

∆Station

Displays difference between the station (chainage) of the last measurement to the rod and the currently specified station (chainage). Move the rod toward the beginning of the project if this value is positive, move the rod away from the beginning of the project if this value is negative.

۲

۲

∆Catch Offs

The horizontal offset from the catch point to the last measurement.

∆Catch HgtD

The vertical offset from the catch point the last measurement.

∆Hinge Offs

The horizontal offset from the hinge to the last measurement.

∆Hinge HgtD

The vertical offset from the hinge to the last measurement.

∆CL Offset

The horizontal offset from the centerline to the last measurement.

∆CL HgtDiff

The vertical offset from the centerline to the last measurement.

∆V fmSlope

Vertical distance from Cut- or Fillslope at the specified station.

Slope

Slope ratio of Cut- or Fill slope.

Elevation

Elevation at measurement.

The following illustration represents the various components of the REFPT option.

Data Formats

Horizontal Alignment

The following describes the format and contents of the data stored for alignments and cross-sections in the Road+ program. All files are in GSI format and all files for a project must be located in the same directory of the memory card.

The following geometric elements are supported:

Element	Definition	Declaration in the alignment file
Tangent	Station, Beginning (X,Y)	"STRAIGHT"
Circular curve	Station, Beginning of arc (X,Y), Radius,	"000CURVE"
Spiral in	Station, Beginning of curve (X,Y), A-Parameter (A= \sqrt{LxR})	"00SPIRIN"
Spiral out	Station, Beginning of curve (X,Y), A-Parameter (A= \sqrt{LxR})	"0SPIROUT"
Curve in	Station, Beginning of curve (X,Y), Radius 1, Radius 2	"0CURVEIN"
Curve out	Station, Beginning of curve (X,Y), Radius 1, Radius 2	"CURVEOUT"
End of Project	Station, Coordinates (X,Y)	"00000EOP"

Header of the Horizontal Alignment File:

41.	+000JOBID 42+HZALIGNM 43+STACOORD	block at
WI 41	Job-Identification. Max. 8 ASCII-characters, may be defined by user.	 Tangen "000001
WI 42	Identification of Horizontal Alignment file. May not be changed by user.	Data un
WI 43	Identification of principal point type file. May not be changed by user.	WIST WI81 a

The data block for a principal point in the file is structured as follows :

11....+KILOMETR 71....+ONEXTGEO 72....+ONEXTRAD 73....+OTEMPLNR 81..10+0000000 82..10+0000000

- WI 11 Station (chainage) of the point.
- WI 71 Type of the following geometric element.
- WI 72 Radius of the next horizontal geometric element, Radius 1 for a compound curve, or the A-Parameter for spirals.
- WI 73 Number of a cross-section (Template) assigned to the next geometric element.
- WI 74 Radius 2 for compound curves.
- WI 81 E-Coordinate of the point.
- WI 82 N-Coordinate of the point.

Comments:

- The header consists of a single block at the start of a data file.
- Tangents and the EOP contain "00000NON" in WI72
- Data units and decimal places in WI's 11, 72 and 74 are defined by WI81 and WI82.
- If the radius point for a curve (circular or spiral) is to the left of the alignment (looking in the direction of increasing stations) the radius is negative.
- If the radius point for a curve (circular or spiral) is to the right of the alignment (looking in the direction of increasing stations) the radius is positive.
- A cross section (Template) may be assigned to more than one location.

least two elements. The last element must be "EOP".

• An alignment file must contain at

Horizontal Alignment, continued

• There is no limitation on the size of the Hz-alignment file. If a file is created/edited using the program "ROAD+FILE EDITOR" on the TPS1100, there is a limitation of 200 data blocks.

Example of a Horizontal Alignment:

41+OEXAMPLE	42+HZALIGNM	43+STACOORD	
11+00000000	71+STRAIGHT	72+00000NON	
73+QP000125	8110+06000000	8210+02000000	
11+00198832	71+OOSPIRIN	7200122474	
73+QP000123	8110+06068005	8210+02186841	
11+00348832	71+000CURVE	7200100000	
73+QP000123	8110+06150344	8210+02307751	
11+00450725	71+OSPIROUT	7200100000	
73+QP000123	8110+06247816	8210+02304071	
11+00550725	71+STRAIGHT	72+00000NON	
73+QP000125	8110+06310759	8210+02227794	
11+00714138	71+OOSPIRIN	72+00054772	
73+QP000124	8110+06392465	8210+02086275	
11+00789138	71+000CURVE	72+00040000	
73+QP000124	8110+06445859	8210+02037807	
11+00824376	71+OSPIROUT	72+00044721	
73+QP000124	8110+06478120	8210+02048886	
11+00874376	71+STRAIGHT	72+00000NON	
73+QP000125	8110+06496445	8210+02094478	
11+01127904	71+00000EOP	72+00000NON	
73+QP000125	8110+06540469	8210+02344154	

Horizontal Alignment, continued

Vertical Alignment

The principal points method allows joining elements without the use of intermediate tangents. The following combinations, for

example, may be defined:

- Double spiral: spiral out followed by spiral in
- Multiple circular curves
- S curves with and without intermediate tangents

Geometric elements supported:

Element	Definition	Declaration in the alignment file
Tangent	Station, H	"STRAIGHT"
Circular curve	Station, Radius, H	"000CURVE"
Parabola	Station, Parabola parameter, H (see page 192 for Parameter Formulare)	"0PARABOL"
End of Project	Station, H	"00000EOP"

Vertical Alignment File Header:

41	.+000JOBID 42+0VALIGNM 43+STACOORD	
WI 41	Job-Identification. Max. 8 ASCII-characters, may be defined by user.	
WI 42	Identification of Vertical Alignment file. May not be changed by user.	
WI 43	Identification of principal point type file. May not be changed by user.	
	000	7

Example for a data block for a vertical alignment point:

11...+KILOMETR 71...+ONEXTGEO 72...+ONEXTRAD 83..10+00000000

- WI 11 Station (chainage) of a vertical alignment point
- WI 71 Type of the following geometric element
- WI 72 Radius of the following geometric element or parabola parameter
- WI 83 Elevation of the point

Comments:

- The header consists of a single block.
- Tangents and the EOP contain "00000NON" in WI72
- Data units and decimal places in WI's 11 and 72 are defined by WI83.
- Tangent and arc lengths are calculated from the stationing.
- The stationing is projected onto a horizontal plane.
- If the curve radius point lies above the centerline, the radius is positive.
- If the curve radius lies beneath the centerline, the radius is negative.
- An alignment file must contain at least two elements.

Example of a vertical alignment file:

41....+0example42....+0VALIGNM43....+STACOORD11....+000000071....+STRAIGHT72....+00000NON83..10+0040000011....+003000071....+0PARABOL72....-0114293283..10+0042250011....+005000071....+STRAIGHT72....+0000NON83..10+0042200011....+0055000071....+STRAIGHT72....+0000NON83..10+0041500011....+0085000071....+STRAIGHT72....+0000NON83..10+0040652211....+0112790471....+0000EOP72....+0000NON83..10+00418605

Geometric elements supported:

Element	Definition
Height differences	Height difference from the centerline
Distance	Horizontal distance from the centerline
Cross section type	Differentiate between CUT and FILL cross sections
Slope	Slope ratio

Header of the Cross Section File:

41....+00JOB_ID 42....+TEMPLATE

- WI 41 Job identification. Max. 8 ASCII characters, user definable.
- WI 42 Template file identification. May not be changed by user.

A data block for a cross section is structured as follows:

11+OPROF_NR	3510+DISTANCE	3610+000HDIFF
71+0000FILL	72+00002000	

- WI 11 The cross section number.
- WI 35 Horizontal distance from the centerline.
- WI 36 Height difference from the centerline.
- WI 71 Cross section type.
- WI 72 Slope ratio.

Comments:

- All data blocks having the same cross section number (WI11) belong together.
- All data blocks belonging to a cross section must be consecutive in the file to minimize file access.
- The data blocks for a cross section must be sorted from left to right across the section.

- Data units defined by WI 35+36.
- Cross-sections do not have to be sorted by number.
- A negative distance (WI35) indicates a point to the left of the centerline.
- A positive distance (WI35) indicates a point to the right of the centerline.

- A negative height difference (WI36) indicates a point below the centerline.
- A positive height difference indicates a point above the centerline.
- A cross-section may contain up to 48 points.
- A template file must contain at least one cross-section.
- The entries for cross section type and slope are optional.
- The non-zero slope entry must be attached only to the last point on each side of the cross section.

41+OEXAMPLE	42+TEMPLATE		
11+QP000123	3510-00013000	3610-00003000	
11+QP000123	3510-00010000	3610-00005000	
11+QP000123	3510-00004000	3610-00000100	
11+QP000123	3510+00004000	3610+00000100	
11+QP000123	3510+00010000	3610-00006000	
11+QP000123	3510+00013000	3610-00003500	
11+QP000124	3510-00012000	3610-00002000	
11+QP000124	3510-00011000	3610-00004000	
11+QP000124	3510-00004000	3610+00000100	
11+QP000124	3510+00004000	3610-00000100	
11+QP000124	3510+00011000	3610-00005000	
11+QP000124	3510+00012000	3610-00002500	
11+QP000125	3510-00012000	3610-00002000	
11+QP000125	3510-00011000	3610-00002500	
11+QP000125	3510-00004000	3610-00000070	
11+QP000125	3510+00004000	3610-00000070	
11+QP000125	3510+00011000	3610-00002500	
11+QP000125	3510+00012000	3610-00002000	
11+TEMPLATE	3541-00002000	3611+00000000	71+0000FILL
72+00002000			
11+TEMPLATE	3541-00000500	3611+00000000	71+0000FILL
/2+00000000	0.5 44 00000000		74 00005711
II+IEMPLAIE	3541+00000000	3611+00000000	/1+0000FILL
/2+00000000	05 41 00001000	0.6 11 00000000	71 0000511
II+IEMPLAIE	3541+00001000	3611+00000000	/1+0000FILL
/2+UUUUUUUU	05 41.00000000	0. 11.0000000	71 .00005111
11+IEMPLAIE	3541+00002000	3611+00000000	/1+UUUUFILL
/2+00002000			

Example:

Elements supported:

Element	Definition
Cross Section number	The number or identifier of the cross section
Chainage	The chainage from which the cross section is applied

Header of the Cross Section Assignment File:

410001+000ASKER 42..10+ASSIGNMT 43....+CRSASKER

- WI41 Job identification. Max. 8 ASCII characters, user definable.
- WI42 Cross section assignment file identification. May not be changed by user. Data units are defined by characters 6+7 of WI42.WI43 Name of the corresponding cross section file.

A data block for a cross section assignment is structured as follows:

110002+0000NORM 71....+00382000

- WI 11 The cross section number or identifier
- WI 71 Beginning chainage for that cross section

Comments:

- A cross section assignment file must have a corresponding cross section file.
- A cross section remains valid until a new cross section is assigned.
- A given cross section may be assigned more than once.
- The units for station (chainage) are defined in WI 42 in the file header.

Cross Sections Assignment, continued

Example:

410001+000asker 110002+0000NORM 110003+0000NORM 110004+0000568 110005+000585.1 110007+000585.2 110008+0000NORM 110009+0000NORM 110010+00000811 110011+000826.9 110012+00000827 110013+0000827 110014+000826.9	4210+ASSIGNMT 71+00382000 71+00552000 71+00568000 71+00568100 71+00585100 71+00585200 71+00611000 71+00811000 71+00826900 71+00827000 71+00844000 71+00844100 71+00860000	43+CRSASKER	
---	--	-------------	--

Station Equations

Elements supported:

Element	Definition
Station equation number	The number or identifier of the station equation
Chainage ahead	The chainage to be applied going forward along the alignment from the equation.
Chainage back	The chainage to be applied going backward along the alignment from the equation.

Header of Station Equation File:

41+00JOB	ID	42	+0STAEOTN
11 000000	10		

- WI41 Job identification. Max. 8 ASCII characters, user definable.
- WI42 Station Equation file identification. May not be changed by user.

A data block for a station equation is structured as follows:

41....+00000001 42..10+00100000 43..10+00200000

- WI 41 The station equation number.
- WI 42 Chainage ahead.
- WI 43 Chainage back.

Comments:

Data units are defined by characters 6+7 in WI42+43

Example:

41....+00JOB_ID 42....+0STAEQTN 41....+0000001 42..10+00100000 43..10+00200000 41....+00000002 42..10+00566000 43..10+00600000

Log File

If "Log File" is set to "ON" the measurements and the results are stored in the ASCII-file specified within the "Configuration Editor". This file is created in the directory LOG on the memory card. Subsequently, you can read the memory card on your PC and obtain a hard copy of the Log-file.

Data will always be appended to the specified Log-file.

The Log-file contains the following information:

includes:

Header

- the program used,

- information about the instrument,
- the file to store the measurement data,
- the date and the time.

Log File, continued

Configuration

the name of the input files for:

- the Hz-alignment,
- the V-alignment and
- the cross section.

Measurement

- Instrument station with coordinates and instrument height.
- Stakeout point with heigth offset,
- offset¹ and height displacement² relative to centre line,
- comparison values from planning, and associated differences.

- ¹ This value results from
 - the displacement of the zero point of the profile
 - and
 - the displacement taken from the transverse profile.
- ² This value results from
 - the displacement of the zero point of the profile

and

- the displacement taken from the transverse profile
- the height displacement in the configuration.

Log File, continued

Example of a log file for the program "Road+":

Leica Geosystems Instrument Meas. File Program Start	VIF : :	P RoadPlus V 0.90 TPS1100, Serial FILE01.GSI 02/07/1998 at 10	400001, :37	
Horizontal Aln Vertical Aln Cross Sections	: : :	ALNSPORT.GSI PRFSPORT.GSI CRSSPORT.GSI		
Station no.	:	1 E= 0.000m N=	= 0.000m ELV= 0.4	000m hi= 1.6000m
Point No. Chainage Design Staked Deltas	: : : : : : : : : : : : : : : : : : : :	55 150.000, Offset= E= -79.269m, E= -1.057m, dE= -78.211m,	0.000m, N= 19.917m, N= 2.578m, dN= 17.339m,	Hght Offset= 0.000m ELV= 400.501m ELV= 0.107m dELV= 400.394m
Point No. Chainage Design Staked Deltas	: :	5 100.000, Offset= E= -46.305m, E= -0.000m, dE= -46.305m,	0.000m, N= 26.708m, N= 2.774m, dN= 23.934m,	Hght Offset= 0.000m ELV= 400.409m ELV= 0.051m dELV= 400.358m
Point No. Chainage Design Staked Deltas	::	5 100.785, Offset= E= -46.688m, E= -0.000m, dE= -46.688m,	0.000m, N= 27.392m, N= 2.774m, dN= 24.619m,	Hght Offset= 0.000m ELV= 400.365m ELV= 0.051m dELV= 400.314m

Auto Record

Introduction

This manual describes the "AUTO RECORD" program of the TPS1100 instruments.

The program automates the recording of field measurement data and is designed especially for TPS1100 instruments with ATR. The program does not require the use of a 360° prism, but the 360° prism does facilitate the field work by avoiding the need to keep the prism oriented toward the TPS1100 instrument. Once the program configuration has been set in accordance with the requirements of the particular survey being performed, and tracking mode measurements started, positions will be automatically measured and recorded with no further operator input.

Feature coding may be added to the recorded data as necessary, while the program continues to operate. It is not necessary to exit the program in order to input and record feature coding information.

Automatic recording may be triggered by the current distance from the last recorded position, the time elapsed since the last recorded position, the prism remaining stationary for a specified length of time, or any combination of the above factors. When a combination of factors is specified, a position is recorded as soon as any one of the factors is satisfied. At any time, a position may be recorded manually by pressing a single button. Whenever a position is recorded, manually or automatically, all currently active factors are "reset" and begin counting anew for the next automatically recorded position.

Configuration Options

Before using the Auto Record program the first time, you must select the mode or modes and define the interval or intervals you wish to use to control the automatic recording process.

When you start the program, the AREC\ MEASUREMENT dialog will be displayed.

dialog.

244

Configuration Options, continued

Three automatic recording modes are available:

- Time Interval,
- Distance Interval
 and
- Stable Position.

The intervals are applied relative to the last recorded position, whether triggered manually or automatically. In all cases, the measurement data will be recorded using the REC Mask you have specified.

TimeInterv

When this mode is ON and the TCA-/ TCRA-instrument is following a prism in the tracking measurement mode, measurement data will be recorded automatically whenever the time since the last recorded measurement data exceeds the time interval shown here, i.e. every 5 seconds.

DistInterv

When this mode is ON and the TCA-/ TCRA-instrument is following a prism in the tracking measurement mode, measurement data will be recorded automatically whenever the three dimensional slope distance from the last recorded measurement data exceeds the distance shown here, i.e. 5 meters.

Stable Pos, StableTime

When this mode is ON and the TCA-/ TCRA-instrument is following a prism in the tracking measurement mode, measurement data will be recorded automatically whenever the prism remains within a circle of the radius for the length of time shown here, i.e. the position remains constant within 5 centimeters for 2 seconds.

Configuration Options. continued

Notes on Configuration

Continue to the AREC F1 \bigcirc MEASUREMENT dialog after selecting and/or setting the automatic recording mode(s) as necessary.

Toggle the Time Interval F3 \odot mode ON or OFF. When this mode is OFF, the small square next to TimeIntery: will be empty and the time interval definition will be a series of dashes. When this mode is ON. there will be a small X in the square. and the last active time interval will be shown.

Toggle the Distance Interval F4 \odot mode ON or OFF When this mode is OFF, the small square next to DistInterv: will be empty and the distance interval definition will be a series of dashes. When this mode is ON, there will be a small X in the square, and the last active distance interval will be shown

Toggle the Stable Position F5 mode ON or OFF. When this mode is OFF, the small square next to Stable Pos: will be empty, and both the stable position and stable time definitions will be a series of dashes. When this mode is ON, there will be a small X in the square, and the last active stable position and stable time definitions will be shown.

Quit the Auto Record program without

recording any more data.

You may have any combination of automatic recording modes active at the same time, or all of them if you find it advantageous. When more than one mode is active simultaneously, the first mode that is satisfied causes the position of the prism to be recorded and then resets all of the active modes.

For example:

Suppose you have both the **Distance Interval and Stable** Position modes ON, the TCA-/ TCRA-instrument is following a prism in the tracking measurement mode, and the last recorded measurement data was at X = 10. Y = 10.

As long as the prism is moving continuously but never gets more than 5 meters from XY = 10, no more data will be recorded. If you stop and center the prism over a point of interest, say at X = 12, Y = 12, for 2 seconds, that measurement data will be automatically recorded and will reset the distance interval as well. Then, as long as the prism is moving continuously but never gets more than 5 meters from XY = 12, no more measurement data will be automatically recorded.

- If you move directly North from XY = 12, more measurement data will be automatically recorded as you move past X = 12, Y = 17. The exact measurement data to be recorded will depend upon how rapidly you are moving and how close to the 5 meter limit the preceding measured position was.
- If you continue moving directly North from X = 12, Y = 17 and press REC to trigger a manual position recording as you pass X =12, Y = 20, that will reset the distance interval as well. Then, as long as the prism is moving continuously but never gets more than 5 meters from X = 12, Y = 20, no more measurement data will be automatically recorded.

This combination of Distance Interval and Stable Position modes is ideal for automating a topographic survey of an irregularly detailed site. In relatively open areas, measurement data will be automatically recorded as the prism is "scanned" across the surface, based on the specified distance interval. In areas with more detail, measurement data will be automatically recorded whenever the prism is centered over a point of interest for the indicated amount of time.

Measurement and Recording

When the program starts, it will display the AREC\ MEASUREMENT dialog.

ſ	AREC\	Auto	Record		7 ସ
	Point	Id :		1	
	Point	Code:			
	Refl.	Ht. :		1.500	m
	Hz	:	289	.3570	g
	۷	:	64	.5875	g
	Horiz	Dist:		2.616	m
l	ALL	DIST F	EC START	TARGT	
	Ht. D:	iff. :		0.312	m
	East	:	10	2.518	m
	North	:	9	9.873	m
	Eleva	tion :	40	1.257	m
SHIFT		CONF	I<>II		QUIT
۲	F1	F2	F3 F	4 💦 F5	5 F6

Point Id

The point identifier assigned to the next recorded position.

Point Code

The Point Code assigned to the next recorded position. The Point Code may or may not be recorded, depending on the REC Mask you have specified.

Refl. Ht.

The current height of the prism above the end of the plumb pole, or above the ground if the prism is mounted on a vehicle or other objects.

Ηz

The current reading of the horizontal circle. This will correspond with the grid azimuth of the line of sight only if the instrument has been oriented before starting the Auto Record program.

۷

The current reading of the vertical circle.

Horiz.Dist

The last unrecorded slope distance reduced to a horizontal distance at the elevation of the instrument.

Ht. Diff.

The ground to ground height difference from the instrument station to the prism at the last measured slope distance.

East

The Easting or X coordinate at the last measured slope distance to the prism.

North

The Northing or Y coordinate at the last measured slope distance to the prism.

Elevation

The ground elevation at the last measured slope distance to the prism.

Measurement and Recording, continued

Manually trigger the \odot measurement of a single distance and record the measurement data in the active Measure Job. The distance-related results will not be displayed. The data will be recorded using the REC Mask you have specified.

Manually trigger the F2 measurement of a single distance. The distance-related results will be displayed and may be viewed by scrolling the display.

F3 ۲

Manually record the currently displayed data, with or without any distance-related data, in the active Measure Job. May be pressed at any time during the

automatic data recording process to record the current position of the prism in the active Measure Job. The data will be recorded using the REC Mask you have specified.

Start the automatic data

recording process. ATR will be turned on, if it is not already on, and the EDM will start measuring in the rapid tracking mode. Whenever an automatic recording mode is satisfied, a position will be automatically recorded in the active Measure Job. The data will be recorded using the REC Mask you have specified.

If this function is available on F5 this dialog in your current instrument configuration, use it to set the prism offset and ppms to match the conditions that exist when you are measuring.

F2

Access the Auto Record Configuration dialog to

select and/or change the automatic recording mode and interval in use.

(Motorized instruments only.)

SHIFT		F6
۲		

Quit Auto Record without recording any

more data.

CODE	Call up the CODE function to
۲	create and record a Code

Block in the active Measure Job.

The Auto Record program works with

Notes on Measurement

the TPS1100 series TCA instruments to automate the collection of large quantities of measurement data for topographic surveys. It can be used to great advantage on larger, open sites when the prism is mounted on a vehicle, and the vehicle is then driven on a suitable weaving pattern to cover the area of the site. Measurement data will be recorded along the path of the vehicle, on virtually any useful spacing. Auto Record can also be used to speed the process of collecting data for detailed topographic surveys, as-built surveys and any other type of survey where large numbers of features must be located

Auto Record does not interfere with the use of Coding to identify the measurements being recorded.

Remote Control Surveying (RCS) also works well with Auto Record, making it especially easy to perform detailed topographic surveys with a one man survey crew. Auto Record does not generate a logfile.

Example of Logfile Data

Monitoring

Introduction

This manual describes the "Monitoring" program for the TPS1100 Professional series instruments.

The program is used for repeated automatic measurements. It measures angles and distances to predefined points.

The location of the points can be "learned" by measuring to them in the "Learning Points" dialog or point information can be taken from a *.GSI file stored on the PCMCIA card.

Max. 50 points and as many repetitions as desired, at any time intervals.

With the timer function the program can trigger automatic measurements at any predefined interval. The measurements can be:

- repeated as often as is necessary,
- at any time
- performed in both faces.

The point number, the horizontal and vertical angles and the slope distance for the individual measurements are stored on the memory card.

Points to be measured must be permanently equipped with Leica Geosystems prisms. The instrument must be firmly mounted on a tripod or pillar. Measurements are limited only by the storage capacity of the PCMCIA memory card.

Main menu

- 1 ()
- Selection of points to be measured.
- 2 ●
- Set timer requirements.

4

- Start point measurement.
- Exit the "Monitoring" program.

Selecting Points

The points and the measurement method to be used can be selected in this menu.

ſ	MON	IT\	Po	oini	: Sel	ecti	on				D
	Mea	s	iob	:	FIL	E01	.GS	I a:		,	ž
	Con	tro	51	:			LEA	RNED) 🔻	,	
	Tot	at]	. Pt	s:				30)		
	Sel	ect	: Pt	s:				17	7		
	Mea	sMe	etho	d :				<>	•		
	Rep	eti	tio	n :				3	3		
	CON	IT	MEA	S	SELCT						
SHIFT											
<u> </u>	۲	F1	۲	F2	€ €	3	F4	۲	F5	۲	F6

Meas job:

Select the measurement job to record measured data to.

Control:

The points to be used during the measurement can be "learned" or taken from a previously stored data file by selecting either 'Learned' or a '*.GSI' file.

Total Pts:

Total number of learned or recorded points.

Select Pts:

Number of points selected for measurements.

MeasMethod:

There are 4 measurement methods to choose from.

<> Measures all repetitions in face I followed immediately by all repetitions in face II at each point. Instrument stays in closest face, i.e. if last face at point A is face II then first face at point B is face II.

[A I	A II	ΒII	ΒI	CI]
[1,2,3	1,2,3	1,2,3	1,2,3	1,2,3]
Selecting Points, continued

>< Measures loops of all points in face I followed by all points in face II in the inverse sequence of points. Number of loops equals the number of repetitions.

[1:1	II	2: I	II	3: I]
[ABC	СВА	ABC	СВА	ABC]

>> Measures a set of all points in face I followed by all points in face II in the same point order. Number of sets equals number of repetitions.

[1:1 2:1 Ш 3:1 Ш ...] [ABC ABC ABC ABC ABC ...]

> Measures all repetitions to each point before moving to next point. Only in face I.

[A I ΒI CI ...1 [1.2.3 1.2.3 1.2.3 ...1

Go to Main menu after all points have been activated and MeasMethod selected.

Calls the Measurement menu F2 ۲ for first time point measurement (See measurement menu).

F3 Calls the Point Selection (See Selecting the Points to be Measured).

Measurement menu

If the measurement file already contains points, then when this function is called you will be asked whether the points are to be overwritten.

For the instrument to learn a point the prism must be targeted manually. Triggering the distance measurement then initiates a distance measurement and a precise determination of the angle.

Measurement menu, continued

Selecting the points to be measured

F1 Simultaneously measure and record data in the active measurement job.

Measured point becomes selectable.

Measure a distance.

Record the measurement in the active measurement job.

Measured point becomes selectable.

F4 Accept the measurement. Measured point becomes selectable.

Quit the function after all points have been measured; return to the "Point Selection" menu. Select the points required for the automatic measurement here. Identical point numbers can be used for different points.

	MONIT Point Select Hz V Slope DONE	Po Id ed Dis	int §	Sele 2	ctio	n 5/5 100 (47'05 15'30 54.25	50 00 0n 5" 6" 54 m	
SHIFT	F1	F	2 2	NE F3	ALL	F4	F5	QUIT

Selected:

On/Off activates and deactivates current point.

Ends Point Selection and returns to previous dialog.

Display the next point in the file.

Positions telescope to displayed target.

SHIFT Deactivate all points.

SHIFT

F3

Activate all points.

Timer selection

	MONI Beg End End Dela	Da [†] Tir Da [†] Tir av	Ti te ne te ne	mer	Sele	25. 08: 25. 17: 0	10.9 30:0 10.9 00:0 h 45	9 0 9 0 9 0 m		MC
SHIFT	CON	F1	•	=2	F3	• F4		F5	•	F6

Beg/End Date/Time:

Enter beginning date and time as well as end date and time. End time must be later than beginning time and current time for measurements to start.

Delay:

A delay of up to 99 hours and 59 minutes can be set. Delay is from beginning to beginning, i.e. if a complete measurement with all repetitions takes 30 minutes and delay is set to 45 min, there will be a 15 min. pause after the end of the measurements before the instrument starts to measure again. If Delay is shorter than measurement time, instrument measures continuously.

● F1

Go back to Main Menu after completing all settings.

Dialog shows date and time of next measurement.

If a point can not be measured, the TCA or TCRA starts its internal search routine and, if unsuccessful, goes on to the next point to be measured.

ESC
۲

Abort the automatic measurement.

Reference Plane

Introduction

This manual describes the program "Reference Plane" for TPS1100 Professional series instruments.

Reference Plane first defines a reference plane and then calculates coordinates of points on the plane from Hz- and V- angles. If distances are measured, the perpendicular deviation of the point from the plane is also calculated.

The plane can be defined in the instrument coordinate system or in a "local" plane coordinate system.

Two points can be used to define a vertical plane or 3-10 points can define a tilted plane. With 4 or more points, a least squares adjustment is calculated resulting in an adjusted plane.

Introduction, continued

Reference Plane Menu

The max, allowed deviation of these points from the plane can be set in the Configuration dialog.

Once the plane has been defined it can be shifted by an entered offset. Alternatively it can be shifted through a measured point.

Plane information as well as measured points can be recorded in a Logfile.

The coordinate system is selected in the beginning.

Local Coordinates

After measuring the points to define the plane the user can enter local coordinates for the first point. This sets the local coordinate system. All points are calculated in it.

Instrument Coordinates

All points are calculated and recorded in the instrument coordinate system.

For Instrument Coordiantes station must be setup and oriented.

Vertical Plane

A vertical plane is defined by 2 points.

The X-axis of the plane starts in the first measured point and points to the right (seen from the instrument station). It is horizontal.

The Z-axis is parallel to the instrument zenith.

The Y-axis is perpendicular to the plane. Offsets are applied in the direction of the Y-axis

For horizontal planes the positive Z-axis points in the direction of the instrument's zenith. X- and Y-axes are horizontal.

Tilted Plane

For "local" planes defined by 3 or more points the Z-axis is defined by the steepest grade of the plane.

The Y-axis is the normal vector of the plane (+Y is away from the instrument) and the X-axis is perpendicular to Z and Y and consequently horizontal. Offsets are applied in the direction of the Y-axis.

Tilted Plane, continued

Define Points

Coordinates of the origin are entered by the user after plane definition.

The "origin" is defined as the projection of the first measured point onto the calculated (adjusted) plane.

This dialog defines the points that determine the plane. Up to 10 points can be used. They can be measured or imported from a file.

	REFP\ Point Refl. Hz V Horiz Elev.	Def Id Ht. Dist	Local : : : :	Plane 364 98 25	Pt.1 0.000 1.3931 3.2225 56.114 12.004) m 9 5 g 1 m 1 m	MC
	ALL	DIST	REC	CONT		C/	ALC
SHIFT	F1	F	2 F	⁻³ F		R Q	F6

Simultaneously measure and record data in the Meas job. Continue to next point.

Measure a distance.

Record the measurement in F3 the measurement job.

iob.

Continue to next point without recording data in measurement

Calculate the plane parameters. Note: this key is only available after two points have been measured/input.

HIFT	
۲	۲

Import point coordinates.

Exit program.

Two points define a vertical plane. Use more points to define a tilted plane.

The program checks if the plane is defined in space (minimum distances between points) but does not check for optimal point distribution.

Define Local Plane

Results Dialog

Calculates the plane parameters as well as standard deviation of the adjusted plane (for more than 3 points). Coordinate entry for origin of local system.

No. of Pts.

Number of points used for plane calculation.

s0

Standard deviation of the plane.

X-Coord

Enter local X-coord of origin. The origin is defined as the projection of the first measured point onto the calculated plane (see graphics).

Z-Coord

Enter local Z-coord. of origin. The origin is defined as the projection of the first measured point onto the calculated plane (see graphics).

- F1 Set origin and continue to offset dialog.
- F2 Measure additional points to define plane.
- ^{F5} Show the results of each definition point. (See "Results" dialog)

Define new plane.

Displays the perpendicular deviation of each defining point from the plane (only if 4 or more points are used).

Pt.ld

Displays Pt.Id of defining points.

∆d (m)

Deviation of point from plane.

Sts

Point status can be ON/OFF. If point is off, it is not included in the calculation.

Recalculate the plane.

Delete point.

Offset Dialog

Once the plane has been defined, it can be shifted by an offset. The offset value can be entered manually or a point can be measured to shift the plane through.

Offset

Enter value by which to offset the plane. If point was measured, calculated offset is displayed.

Offsets are applied in the direction of the Y-axis.

Offset Pt.

Displays PtId of measured point.

F6

- Set offset and measure points on the plane.
- Measure point to offset plane through.
 - Define new plane.

Point Measurement

The local coordinate system measurement dialog displays the coordinates of points on the plane in the defined local coordinate system.

	REFP\ Point Refl. X-Coor Y-Coor Z-Coor Δd	Re Id Ht rd. rd. rd.	ferer	ice P	1ane 0 2 0 1 -	4 .000 .001 .000 .521	m m m m m	MC
U	ALL	DIS	r RI		ONT		D	F
SHIFT	F1	۲	F2	F3	• F4	• F	5	F6

X-Coord.

X-coordinate in local system. Changes with telescope movement.

Y-Coord./∆d

Y-coordinate in local system. This is always identical to Δd - the distance to the plane and is 0.000 unless a distance was measured.

Z-Coord.

Z-coordinate in local system. Changes with telescope movement.

Point Measurement, continued Instrument system

Define Instrument Plane

• F1 Measure and record data in active Meas job and logfile if configured.

Measure a distance.

• F3 Record data in active measure job and Logfile if configured. Increment Point Id.

Clear distance and increment Ptld without recording data.

Return to Define Offset dialog.

GSI file always stores instrument system information. For local system information turn Logfile ON (see

chapter "Configuration").

The "Define Point" dialogs for instrument systems are the same as for local systems. The plane coordinate system is not defined by the user. Points on the plane have instrument coordinates.

The "Define Plane" dialog combines standard deviation and offset.

No. of Pts Number of points used for calculation.

s0

Standard deviation of the plane.

Offset

Enter value or measure point to offset the plane. Offsets are applied in the direction of the normal vector

Offset Pt.

Displays Ptld of measured point.

Define Instrument Plane, continued

Point Measurement

Accept settings and measure points on the plane.

Measure additional points to define plane.

Measure point to offset plane through.

Show the results of each definition point (see "Results" dialog).

Define new plane.

The coordinates shown for the points are in the instrument coordinate system. Keys are the same as for "Local".

Δd

Distance from point to plane. "-----" unless a distance was measured.

	Poi Ref Eas Nor Ele Ad	P int i1. it it	Id Ht	efe : : :	rence	9 P1 8	0 405 210 125 -	.00 .21 .54 .20	5 0 1 1 1	m m m m m	MC
l	AL	LI	DIS	T	REC	C0	NT			Ď	
SHIFT											
	۲	F1	۲	F2	● F	3	F4	۲	F5	۲	F6

East

East coordinate of point. Changes with telescope movement.

North

North coordinate of point. Changes with telescope movement.

Elev.

Elevation of point. Changes with telescope movement.

Configuration

Start the "Configuration Editor" from the "Main Menu".

Log FIName Enter the Loafile name.

Meas job

Sets the measurement job to record data to.

Data job

Sets the data job containing fixpoint coordinates.

• F1 Store the configuration and return to "Main Menu".

• F5 Set the values to default.

Display date and version no. of ● F6 running application.

Loafile

If Logfile is set to ON the measurements and the results are stored in the ASCII-file specified within the "Configuration". This file is created in the directory LOG on the memory card. Subsequently, you can read out the memory card and obtain a hard copy of the Logfile.

If ON, data is always added to the specified Log-file.

The Logfile contains the following information:

Header

The header line contains the program used, information about the instrument, the name of the data file as well as date and time.

Configuration

Each modification of the reference plane is stored.

Max ∧d

Maximum allowed perpendicular deviation of plane definition point from calculated plane.

Log File

Set to ON, the program records measurement data to a log file.

Should be **ON** for local systems, since GSI file only contains instrument coordinates. Log file saves local system coordinates.

Logfile, continued

 Record For each measurement a record is stored containing: Points defining the plane in local or instrument coordinates, depending 	TPS1100 Prog Instrument Meas.File Progam Start Define Local F	g. Referen : TCRA1 : MYFIL : 12/11/2 Plane	ce Plane V 2.0 I102plus, Seria E01.GSI 2000 at 15:15	0 Il 618268			
 Plane parameters (standard deviation, no. of points used, offset) Coordinates of points measured on plane. 	Station coord No. of Pts s0 (m) Offset (m) Offset Pt.	Point Id 2 100 101 102 103 104 : 4 : 0.000 :	X-Coord (m) 1.936 -0.000 3.458 3.310 2.222 0.644	Y-Coord (m) -3.142 0.001 -0.002 0.002 -0.263 -0.001	Z-Coord (m) 1.936 -0.000 3.458 3.310 2.222 0.644	Dd (m) 3 0.001 -0.002 0.002 -0.263 -0.001	Status ON ON OFF ON
	Points Measu	red Point Id 201 202 203 204 205	X-Coord (m) 0.727 1.835 -0.028 2.175 2.519	Y-Coord (m) 0.000 -0.004 -0.065 -0.290 0.000	Z-Coord (m) 0.404 1.095 2.089 0.170 0.908	Dd (m) -0.004 -0.065 -0.290 	

Typical logfile entries in the "Reference Plane" program.

DTM-Stakeout

Introduction

This manual describes the "DTM-Stakeout" program for the TPS1100 Professional series instruments. The program is used to compare measured elevations to a stored Digital Terrain Model. After measurement the CUT or FILL value between existing ground and the DTM is displayed.

"DTM Stakeout" can be used to stake out points where the DTM represents the surface to be staked.

It can also be used to compare existing ground to the DTM, e.g. for quality control purposes where the DTM represents the final project surface.

"DTM Stakeout" requires the instrument station to be setup and oriented. The instrument must also be configured in the same units as those used in the DTM.

Select DTM File

The first dialog allows selection of the DTM file to be used. The file can be in AutoCad DXF format or in Leica GSI format (see chapter *Data Formats*).

Dir.

Select the directory where the DTM file is stored.

Select DTM File. continued

DTM File

Choose the DTM file to be used.

DXF Layer

If using a DFX file, enter the layer name for the DTM file.

• F1 Continue to Measurement dialog. DTM-Stakeout will automatically check the validity of the file.

- F5 َ ا
- Re-set the Layer name to TRIANGLE.
- F6 ۲

Display the DTM-Stakeout information dialog.

Measurement Dialog

This dialog corresponds to the TPS1100 Professional series "Measure" dialog with the additional entry of the Ht. Difference.

	DTMSO\ Point Refl.H Hz V	Id : It. : :	Mea	sure 208 75	1 1.650 .8481 .4698	m g g	MC
SHIFT	HOFIZ Ht. Di ALL F1	DIST: DIST DIST	REC	52 (CLEAR 3 F4	2.615 0.846	m m 1	F6

To measure and record the CUT/FILL values and the coordinates of the target piont.

Measure a distance and calculate the CUT/FILL values.

Record the measurement in the measurement job.

To clear the displayed values.

Exit the program.

Ht. Diff.

Displays the difference in elevation between the DTM and the measured point.

- if measured point is + (FILL): lower than DTM.
- (CUT): measured point is higher than DTM.

Data Formats

DXF-Format

Data for DTM-Stakeout may be prepared in one of two formats. These are AutoCAD DXF or the standard Leica GSI format. The files must be stored on the PC-card.

Files may be named with any valid DOS name and either a *.dxf or *.gsi extension.

• AutoCAD DXF - Format

DTM triangles are imported as 3DFACE entities from a DXF file. Properties, Layers, etc. may be in the DXF file but are ignored by the DTM-Stakeout application. The completion of the polygon by repeating the first or last point is required by AutoCAD but not by the application. The format is as follows:

0	Start of record.
3dface	Record is a 3D face entity.
TRIANGLE	3D face type.
10	X coordinate, first point.
723573.984000	X value.
20	Y coordinate, first point.
7663192.178000	Y value.
30	Z coordinate, first point.
23.383000	Z value.
11	X coordinate, second point.
723576.998000	X value.
21	Y coordinate, second point.
7663191.120000	Y value.
31	Z coordinate, second point.
23.029000	Z value.
12	X coordinate, third point.
723572.684000	X value.
22	Y cordinate, third point.
7663189.966000	Y value.
32	Z coordinate, third point.
24629.000	Z value.
13	X coordinate, third point.
723572.684000	X value.
23	Y cordinate, third point.
7663189.966000	Y value.
33	Z coordinate, third point.
24629.000	Z value.
0	End of record.

DXF-Format, continued

Leica GSI - Format

WI44

WI45

• LISCAD generated DXF File An AutoCAD DXF file containing 3DFACE may be generated by users of Leica's LISCAD in the following manner:

- In Terrain Modeling/Display/ Features...Select the Model tab – Turn on only the triangles.
- 2) In Terrain Modeling/Display/ Groups... - Turn off all Groups but DEFAULT.
- In CAD Output/Settings/CAD System – Choose AutoCAD DXF.
- In CAD Output/Settings/Codes... -Deselect all the options on all the tabs.
- 5) In CAD Output/Settings/Models...-Set Labels to none, Contours tonone, and activate the Triangles check box.
- 6) In CAD Output/Output! Select the Options button – In the General tab turn off all option check boxes except Model and use Default for All, in the AutoCAD tab deselect all check boxes except 3Dimensional. Then click OK.
- 7) Click OK and create the DXF file that contains only the 3DFACE's.

The required format of a GSI file containing DTM triangles is described below.

Header of the DTM file

The header is the first line in the GSI file. There must be one header line per file in the follwing form:

41....+000JOBID 42....+DTMNTWRK 43....+DTMCOORD 44....+00001000 45....+00001000

- WI41 Job identification, maximum 8 characters, may be defined by user.
- WI42 Identification of DTM file, may not be changed by user. This entry must be +DTMNTWRK.
- WI43 Identification of principal point type, may not be changed by user. This entry must be +DTMCOORD.
 - Optional easting offset. May be defined by user.
 - Optional northing offset. May be defined by user.

If used, easting and northing offsets are added to the coordinates of the triangle vertices. These values have no digits to the right of the decimal place.

For example if units are set to (m), "44....+00001000" means that 1000m will be added each Easting coordinate.

Leica GSI - Format, continued

The data block records for the triangle vertices are contained within the GSI file in sets of three. There is one block for each vertex of each triangle.

Data block for triangle vertex

11....+00000907 71....+TRI00001 81..10+21000000 82..10+50996000 83..10+00100000

- WI11 Point identification, ignored by the application.
- WI71 Triangle number, indicates triangle the coordinates belong to.
- WI81 Easting of the triangle vertex.
- WI82 Northing of the triangle vertex.
- WI83 Elevation of the triangle vertex.

The program cannot calculate the model from coordinate lists. The coordinates must be sorted by triangles. That is, three coordinate blocks with the same triangle number must be found together in the file. The vertices do not have to be sorted in any other way.

Example GSI file

Log File

DTM-Stakeout does not generate a logfile.

The following is a portion of a DTM file in the Leica GSI format. The header and coordinates for the first four and last two triangle vertices are shown. The file contains 44 triangles.

41+000JOBID	42+DTMNTWRK	43+DTMCOORD	44+00001000	45+00001000
11+00000907	71+TRI00001	8110+21000000	8210+50996000	8310+00100000
11+00000013	71+TRI00001	8110+21000000	8210+50992500	8310+00100000
11+00000014	71+TRI00001	8110+20998059	8210+50992756	8310+00100000
11+00000013	71+TRI00002	8110+21000000	8210+50992500	8310+00100000
11+00000907	71+TRI00002	8110+21000000	8210+50996000	8310+00100000
11+00000012	71+TRI00002	8110+21001941	8210+50992756	8310+00099500
11+00000014	71+TRI00003	8110+20998059	8210+50992756	8310+00100000
11+00000013	71+TRI00003	8110+21000000	8210+50992500	8310+00100000
11+00000002	71+TRI00003	8110+21002859	8210+50987867	8310+00100374
11+00000907	71+TRI00004	8110+21000000	8210+50996000	8310+00100000
11+00000014	71+TRI00004	8110+20998059	8210+50992756	8310+00100000
11+00000015	71+TRI00004	8110+20996250	8210+50993505	8310+00099600
11+00000908	71+TRI00043	8110+20996000	8210+51000000	8310+00099800
11+00000019	71+TRI00043	8110+20992500	8210+51000000	8310+00100000
11+00000904	71+TRI00043	8110+20993912	8210+51007934	8310+00100000
11+00000003	71+TRI00044	8110+21003750	8210+51006495	8310+00099700
11+00000904	71+TRI00044	8110+20993912	8210+51007934	8310+00100000
11+00000901	71+TRI00044	8110+21007934	8210+51006088	8310+00100000

Leica Geosystems AG, Heerbrugg, Switzerland has been certified as being equipped with a quality system which meets the International Standards of Quality Management and Quality Systems (ISO standard 9001) and Environmental Management Systems (ISO standard 14001).

Total Quality Management -Our commitment to total customer satisfaction

Ask your local Leica Geosystems agent for more information about our TQM program.

711724-2.2.0en

Printed in Switzerland - Copyright Leica Geosystems AG, Heerbrugg, Switzerland 2001 Original text

Leica Geosystems AG CH-9435 Heerbrugg (Switzerland) Phone + 41 71 727 31 31 Fax + 41 71 727 46 73 www.leica-geosystems.com